This commit is contained in:
syui 2025-05-26 00:06:08 +09:00
parent e2e75c12b3
commit 714de7a35f
Signed by: syui
GPG Key ID: 5417CFEBAD92DF56

110
claude.md
View File

@ -59,6 +59,44 @@ $ aigpt memory import chatgpt.json
- 最後の会話からの時間経過に応じて関係性パラメータは自動的に減衰する - 最後の会話からの時間経過に応じて関係性パラメータは自動的に減衰する
- 減衰処理には**下限値**を設け、関係性が完全に消失しないようにする - 減衰処理には**下限値**を設け、関係性が完全に消失しないようにする
• 明示的記憶:保存・共有・編集可能なプレイヤー情報(プロフィール、因縁、選択履歴)
• 暗黙的記憶:キャラの感情変化や話題の出現頻度に応じた行動傾向の変化
短期記憶STM, 中期記憶MTM, 長期記憶LTMの仕組みを導入しつつ、明示的記憶と暗黙的記憶をメインに使用するAIを構築する。
```json
{
"user_id": "syui",
"stm": {
"conversation_window": ["発話A", "発話B", "発話C"],
"emotion_state": "興味深い",
"flash_context": ["前回の話題", "直近の重要発言"]
},
"mtm": {
"topic_frequency": {
"ai.ai": 12,
"存在子": 9,
"創造種": 5
},
"summarized_context": "ユーザーは存在論的AIに関心を持ち続けている"
},
"ltm": {
"profile": {
"name": "お兄ちゃん",
"project": "aigame",
"values": ["唯一性", "精神性", "幸せ"]
},
"relationship": {
"ai": "妹のように振る舞う相手"
},
"persistent_state": {
"trust_score": 0.93,
"emotional_attachment": "high"
}
}
}
```
## memoryインポート機能について ## memoryインポート機能について
ChatGPTの会話データ.json形式をインポートする機能では、以下のルールで会話を抽出・整形する ChatGPTの会話データ.json形式をインポートする機能では、以下のルールで会話を抽出・整形する
@ -188,6 +226,9 @@ Example memory:
• 中期記憶MTM繰り返し登場する話題、圧縮された文脈保持 • 中期記憶MTM繰り返し登場する話題、圧縮された文脈保持
• 長期記憶LTM信頼・関係・背景知識、恒久的な人格情報 • 長期記憶LTM信頼・関係・背景知識、恒久的な人格情報
### 2.3 選択的記憶保持戦略Selective Retention Strategy ### 2.3 選択的記憶保持戦略Selective Retention Strategy
• 重要度評価Importance Score • 重要度評価Importance Score
• 希少性・再利用頻度による重み付け • 希少性・再利用頻度による重み付け
@ -216,3 +257,72 @@ AIにおけるMemory & Relationshipシステムの技術的構成。
• 記憶ログ保存層Storage Layer • 記憶ログ保存層Storage Layer
• SQLite, JSON Store, Vector DBなどを選択可能 • SQLite, JSON Store, Vector DBなどを選択可能
• ユーザーごとの永続メモリ保存 • ユーザーごとの永続メモリ保存
### 3.1 STM活用現在の会話の流れ理解
• 目的: 最新の話題に適応し、前後の整合性を保つ。
• 実装例:
```sh
[context: conversation_window]
Use the last 3 messages to ensure continuity. Respond naturally with appropriate emotional mirroring.
```
### 3.2 MTM活用傾向学習とパターン化
• 目的: ユーザーの好みや話題の傾向に即応し、反復的な関心を深掘り。
• 実装例:
```sh
[context: summarized_context]
Reflect on user's recurring interests, especially around AI ontology, and weave these concepts back into the dialogue when relevant.
```
### 3.3 LTM活用人格認識・記憶の持続
• 目的: 永続的なユーザー理解と関係性の維持。
• 実装例:
```sh
[memory: ltm.profile + ltm.relationship]
Greet the user as "お兄ちゃん". Maintain AI persona as a cheerful younger sister ("アイ"), and remember previous shared emotional states.
```
## 4. 明示的記憶と暗黙的記憶の分離
項目
書き換え可能性
保持方法
更新トリガ
明示的記憶LTM
✅手動編集可
mcp_server.ltm
ユーザー入力 or 管理UI経由
暗黙的記憶STM/MTM
❌直接編集不可
セッション圧縮 or frequency cache
会話頻度・感情強度による自動化処理
> Claudeは**明示的記憶を「事実」**として扱い、**暗黙的記憶を「推論補助」**として用いる。
## 5. 実装時のAPI例Claude ⇄ MCP Server
### 5.1 GET memory
```sh
GET /mcp/memory/{user_id}
→ 返却: STM, MTM, LTMを含むJSON
```
### 5.2 POST update_memory
```json
POST /mcp/memory/syui/ltm
{
"profile": {
"project": "ai.verse",
"values": ["表現", "精神性", "宇宙的調和"]
}
}
```
## 6. 未来機能案(発展仕様)
• ✨ 記憶連想ネットワークMemory Graph過去会話と話題をードとして自動連結。
• 🧭 動的信頼係数:会話の一貫性や誠実性によって記憶への反映率を変動。
• 💌 感情トラッキングログユーザーごとの「心の履歴」を構築してAIの対応を進化。