This commit is contained in:
2025-05-20 21:49:14 +09:00
commit c40e49f790
18 changed files with 724 additions and 0 deletions

42
tmp/agent/src/main.rs Normal file
View File

@ -0,0 +1,42 @@
use std::env;
use std::process::{Command, Stdio};
use std::io::{self, Write};
fn main() {
let args: Vec<String> = env::args().collect();
if args.len() < 2 {
eprintln!("Usage: langchain_cli <prompt>");
std::process::exit(1);
}
let prompt = &args[1];
// Simulate a pipeline stage: e.g., tokenization, reasoning, response generation
let stages = vec!["Tokenize", "Reason", "Generate"];
for stage in &stages {
println!("[Stage: {}] Processing...", stage);
}
// Example call to Python-based LangChain (assuming you have a script or API to call)
// For placeholder purposes, we echo the prompt back.
let output = Command::new("python3")
.arg("-c")
.arg(format!("print(\"LangChain Agent Response for: {}\")", prompt))
.stdout(Stdio::piped())
.spawn()
.expect("failed to execute process")
.wait_with_output()
.expect("failed to wait on child");
io::stdout().write_all(&output.stdout).unwrap();
}
/*
TODO (for future LangChain-style pipeline):
1. Implement trait-based agent components: Tokenizer, Retriever, Reasoner, Generator.
2. Allow config via YAML or TOML to define chain flow.
3. Async pipeline support with Tokio.
4. Optional integration with LLM APIs (OpenAI, Ollama, etc).
5. Rust-native vector search (e.g. using `tantivy`, `qdrant-client`).
*/

BIN
tmp/img/ai_r.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 MiB

29
tmp/post.json Normal file

File diff suppressed because one or more lines are too long