fix
This commit is contained in:
parent
6380de9a7d
commit
e2e75c12b3
81
claude.md
81
claude.md
@ -135,3 +135,84 @@ ChatGPTの会話データ(.json形式)をインポートする機能では
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
# AI Dual-Learning and Memory Compression Specification for Claude
|
||||
|
||||
## Purpose
|
||||
To enable two AI models (e.g. Claude and a partner LLM) to engage in cooperative learning and memory refinement through structured dialogue and mutual evaluation.
|
||||
|
||||
---
|
||||
|
||||
## Section 1: Dual AI Learning Architecture
|
||||
|
||||
### 1.1 Role-Based Mutual Learning
|
||||
- **Model A**: Primary generator of output (e.g., text, concepts, personality dialogue)
|
||||
- **Model B**: Evaluator that returns structured feedback
|
||||
- **Cycle**:
|
||||
1. Model A generates content.
|
||||
2. Model B scores and critiques.
|
||||
3. Model A fine-tunes based on feedback.
|
||||
4. (Optional) Switch roles and repeat.
|
||||
|
||||
### 1.2 Cross-Domain Complementarity
|
||||
- Model A focuses on language/emotion/personality
|
||||
- Model B focuses on logic/structure/ethics
|
||||
- Output is used for **cross-fusion fine-tuning**
|
||||
|
||||
### 1.3 Self-Distillation Phase
|
||||
- Use synthetic data from mutual evaluations
|
||||
- Train smaller distilled models for efficient deployment
|
||||
|
||||
---
|
||||
|
||||
## Section 2: Multi-Tiered Memory Compression
|
||||
|
||||
### 2.1 Semantic Abstraction
|
||||
- Dialogue and logs summarized by topic
|
||||
- Converted to vector embeddings
|
||||
- Stored with metadata (e.g., `importance`, `user relevance`)
|
||||
|
||||
Example memory:
|
||||
|
||||
```json
|
||||
{
|
||||
"topic": "game AI design",
|
||||
"summary": "User wants AI to simulate memory and evolving relationships",
|
||||
"last_seen": "2025-05-24",
|
||||
"importance_score": 0.93
|
||||
}
|
||||
```
|
||||
|
||||
### 2.2 階層型記憶モデル(Hierarchical Memory Model)
|
||||
• 短期記憶(STM):直近の発話・感情タグ・フラッシュ参照
|
||||
• 中期記憶(MTM):繰り返し登場する話題、圧縮された文脈保持
|
||||
• 長期記憶(LTM):信頼・関係・背景知識、恒久的な人格情報
|
||||
|
||||
### 2.3 選択的記憶保持戦略(Selective Retention Strategy)
|
||||
• 重要度評価(Importance Score)
|
||||
• 希少性・再利用頻度による重み付け
|
||||
• 優先保存 vs 優先忘却のポリシー切替
|
||||
|
||||
## Section 3: Implementation Stack(実装スタック)
|
||||
|
||||
AIにおけるMemory & Relationshipシステムの技術的構成。
|
||||
|
||||
基盤モジュール
|
||||
• LLM Core (Claude or GPT-4)
|
||||
• 自然言語の理解・応答エンジンとして動作
|
||||
• MemoryManager
|
||||
• JSONベースの記憶圧縮・階層管理システム
|
||||
• 会話ログを分類・圧縮し、優先度に応じて短中長期に保存
|
||||
• RelationshipTracker
|
||||
• ユーザー単位で信頼・親密度を継続的にスコアリング
|
||||
• AIM(Attitude / Intent / Motivation)評価と連携
|
||||
|
||||
補助技術
|
||||
• Embeddingベース検索
|
||||
• 類似記憶の呼び出し(Semantic Search)に活用
|
||||
• 例:FAISS / Weaviate
|
||||
• 記憶スケジューラ
|
||||
• 一定時間ごとに記憶のメンテナンス・忘却処理を実行
|
||||
• 記憶ログ保存層(Storage Layer)
|
||||
• SQLite, JSON Store, Vector DBなどを選択可能
|
||||
• ユーザーごとの永続メモリ保存
|
||||
|
Loading…
x
Reference in New Issue
Block a user