Organize repository structure: clean up root directory

Major reorganization to improve clarity and maintainability:

## Documentation
- Created new simple README.md focused on Layer 1
- Added docs/ARCHITECTURE.md explaining multi-layer design
- Moved LAYER1_REBUILD.md -> docs/LAYER1.md
- Archived old documentation to docs/archive/:
  - CHANGELOG.md, QUICKSTART.md, STATUS.md, USAGE.md
  - DESIGN.md, README_CONFIG.md, ROADMAP.md, TECHNICAL_REVIEW.md
  - claude.md, test-mcp.sh

## Source Code
- Moved unused .rs files to src/tmp/:
  - ai_interpreter.rs (Layer 2 - future)
  - companion.rs (Layer 4b - future)
  - game_formatter.rs (Layer 4a - future)
  - memory.rs (old implementation)
  - extended.rs (old MCP server)

## Result
Clean root directory with only essential files:
- README.md (simple, Layer 1 focused)
- Cargo.toml
- .gitignore
- docs/ (organized documentation)
- src/ (active code only)

All Layer 1 functionality remains intact and tested.
This commit is contained in:
Claude
2025-11-05 18:24:38 +00:00
parent 272d01137d
commit f2a02abf3e
19 changed files with 837 additions and 409 deletions

121
docs/archive/DESIGN.md Normal file
View File

@@ -0,0 +1,121 @@
# AI記憶システム設計書
## コンセプト
AIの記憶装置は、人間の記憶に近い形で動作する。すべてを正確に記憶するのではなく、**解釈**して保存する。
## 従来の記憶システムとの違い
### 従来型
```
会話 → 保存 → 検索
```
### 新設計(心理優先記憶装置)
```
会話 → AI解釈 → 保存 → 検索
心理判定(1-100)
優先順位付け
容量管理
```
## 設計原理
1. **解釈保存**: 記憶する際はAIが解釈を加える
- 元のコンテンツと解釈後のコンテンツの両方を保持
- 「覚えること自体が創造」という考え方
2. **心理判定**: 各記憶に重要度スコア1-100を付与
- AIが自律的に判断
- ユーザー固有性を考慮
- 感情的重要度を評価
3. **優先順位管理**: スコアに基づく優先順位
- 高スコア = 重要な記憶
- 低スコア = 忘れられやすい記憶
4. **容量制限**: 人間の記憶のように限界がある
- 総容量制限(デフォルト: 100件
- 単発保存容量制限
- 優先度が低いものから自動削除
## データ構造
```rust
struct Memory {
id: String, // UUID
content: String, // 元のコンテンツ
interpreted_content: String, // AI解釈後のコンテンツ
priority_score: f32, // 心理判定スコア (0.0-1.0)
user_context: Option<String>, // ユーザー固有性
created_at: DateTime<Utc>, // 作成日時
updated_at: DateTime<Utc>, // 更新日時
}
```
## 実装機能
### 1. 心理判定機能
- AI APIを使用して重要度を0.0-1.0で評価
- 判定基準:
- 感情的インパクト (0.0-0.25)
- ユーザーとの関連性 (0.0-0.25)
- 新規性・独自性 (0.0-0.25)
- 実用性 (0.0-0.25)
### 2. 保存機能
- 保存前にAI解釈を実行
- 心理判定スコアを自動付与
- 容量超過時は低スコアから削除
### 3. 検索機能
- 優先順位順にソート
- スコアによるフィルタリング
- セマンティック検索(オプション)
### 4. 容量管理
- デフォルト最大: 100件
- 設定可能な上限
- 自動プルーニング(低スコア削除)
## 実装ステップ
1. Memory構造体の拡張
2. AI解釈機能の実装OpenAI API使用
3. 心理判定機能の実装
4. 容量管理機能の実装
5. ソート・フィルタリング機能の強化
6. MCPツールへの統合
## 設定例
```json
{
"max_memories": 100,
"min_priority_score": 0.3,
"auto_prune": true,
"interpretation_enabled": true
}
```
## スコアリングシステムの哲学
0.0-1.0のfloat値を採用する理由
- **正規化**: 機械学習やAIにとって扱いやすい標準形式
- **直感性**: 0が最低、1が最高という明確な基準
- **精度**: 0.75などの細かい値で微妙な重要度の差を表現可能
- **拡張性**: 時間軸(0.0-1.0)や確率(0.0-1.0)などとの統合が容易
この設計は、「I + o」概念oの周りを0.0-1.0の時間軸で表す)とも整合性がある。
## ゲームのセーブデータとの類似性
- **Git = セーブ機能**: バージョン管理
- **GitHub = クラウドセーブ**: グローバルデータ共有
- **ATProto = データプロトコル**: 分散型データ保存
- **AI記憶 = プレイヤー記憶**: 経験の蓄積と解釈
ゲームのセーブデータも「プレイヤーの行動を解釈したデータ」として扱うことで、より意味のある永続化が可能になる。