Implement AI memory system with psychological priority scoring
Core changes: - Add AI interpreter module for content interpretation and priority scoring - Extend Memory struct with interpreted_content, priority_score (f32: 0.0-1.0), and user_context - Implement automatic memory pruning based on priority scores - Add capacity management (default: 100 memories max) - Create comprehensive design documentation Technical details: - Changed priority_score from u8 (1-100) to f32 (0.0-1.0) for better AI compatibility - Add create_memory_with_ai() method for AI-enhanced memory creation - Implement get_memories_by_priority() for priority-based sorting - Score evaluation criteria: emotional impact, user relevance, novelty, utility Philosophy: This implements a "psychological priority memory system" where AI interprets and evaluates memories rather than storing raw content. Inspired by how human memory works - interpreting and prioritizing rather than perfect recording.
This commit is contained in:
143
src/ai_interpreter.rs
Normal file
143
src/ai_interpreter.rs
Normal file
@@ -0,0 +1,143 @@
|
||||
use anyhow::{Context, Result};
|
||||
|
||||
#[cfg(feature = "ai-analysis")]
|
||||
use openai::{
|
||||
chat::{ChatCompletion, ChatCompletionMessage, ChatCompletionMessageRole},
|
||||
set_key,
|
||||
};
|
||||
|
||||
pub struct AIInterpreter {
|
||||
#[cfg(feature = "ai-analysis")]
|
||||
api_key: Option<String>,
|
||||
}
|
||||
|
||||
impl AIInterpreter {
|
||||
pub fn new() -> Self {
|
||||
#[cfg(feature = "ai-analysis")]
|
||||
{
|
||||
let api_key = std::env::var("OPENAI_API_KEY").ok();
|
||||
if let Some(ref key) = api_key {
|
||||
set_key(key.clone());
|
||||
}
|
||||
AIInterpreter { api_key }
|
||||
}
|
||||
#[cfg(not(feature = "ai-analysis"))]
|
||||
{
|
||||
AIInterpreter {}
|
||||
}
|
||||
}
|
||||
|
||||
/// AI解釈: 元のコンテンツを解釈して新しい表現を生成
|
||||
#[cfg(feature = "ai-analysis")]
|
||||
pub async fn interpret_content(&self, content: &str) -> Result<String> {
|
||||
if self.api_key.is_none() {
|
||||
return Ok(content.to_string());
|
||||
}
|
||||
|
||||
let messages = vec![
|
||||
ChatCompletionMessage {
|
||||
role: ChatCompletionMessageRole::System,
|
||||
content: Some("あなたは記憶を解釈するAIです。与えられたテキストを解釈し、より深い意味や文脈を抽出してください。元のテキストの本質を保ちながら、新しい視点や洞察を加えてください。".to_string()),
|
||||
name: None,
|
||||
function_call: None,
|
||||
},
|
||||
ChatCompletionMessage {
|
||||
role: ChatCompletionMessageRole::User,
|
||||
content: Some(format!("以下のテキストを解釈してください:\n\n{}", content)),
|
||||
name: None,
|
||||
function_call: None,
|
||||
},
|
||||
];
|
||||
|
||||
let chat_completion = ChatCompletion::builder("gpt-3.5-turbo", messages.clone())
|
||||
.create()
|
||||
.await
|
||||
.context("Failed to create chat completion")?;
|
||||
|
||||
let response = chat_completion
|
||||
.choices
|
||||
.first()
|
||||
.and_then(|choice| choice.message.content.clone())
|
||||
.unwrap_or_else(|| content.to_string());
|
||||
|
||||
Ok(response)
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "ai-analysis"))]
|
||||
pub async fn interpret_content(&self, content: &str) -> Result<String> {
|
||||
Ok(content.to_string())
|
||||
}
|
||||
|
||||
/// 心理判定: テキストの重要度を0.0-1.0のスコアで評価
|
||||
#[cfg(feature = "ai-analysis")]
|
||||
pub async fn calculate_priority_score(&self, content: &str, user_context: Option<&str>) -> Result<f32> {
|
||||
if self.api_key.is_none() {
|
||||
return Ok(0.5); // デフォルトスコア
|
||||
}
|
||||
|
||||
let context_info = user_context
|
||||
.map(|ctx| format!("\n\nユーザーコンテキスト: {}", ctx))
|
||||
.unwrap_or_default();
|
||||
|
||||
let messages = vec![
|
||||
ChatCompletionMessage {
|
||||
role: ChatCompletionMessageRole::System,
|
||||
content: Some(format!(
|
||||
"あなたは記憶の重要度を評価するAIです。以下の基準で0.0-1.0のスコアをつけてください:\n\
|
||||
- 感情的インパクト (0.0-0.25)\n\
|
||||
- ユーザーとの関連性 (0.0-0.25)\n\
|
||||
- 新規性・独自性 (0.0-0.25)\n\
|
||||
- 実用性 (0.0-0.25)\n\n\
|
||||
スコアのみを小数で返してください。例: 0.75{}", context_info
|
||||
)),
|
||||
name: None,
|
||||
function_call: None,
|
||||
},
|
||||
ChatCompletionMessage {
|
||||
role: ChatCompletionMessageRole::User,
|
||||
content: Some(format!("以下のテキストの重要度を評価してください:\n\n{}", content)),
|
||||
name: None,
|
||||
function_call: None,
|
||||
},
|
||||
];
|
||||
|
||||
let chat_completion = ChatCompletion::builder("gpt-3.5-turbo", messages.clone())
|
||||
.create()
|
||||
.await
|
||||
.context("Failed to create chat completion")?;
|
||||
|
||||
let response = chat_completion
|
||||
.choices
|
||||
.first()
|
||||
.and_then(|choice| choice.message.content.clone())
|
||||
.unwrap_or_else(|| "0.5".to_string());
|
||||
|
||||
// スコアを抽出(小数を含む数字)
|
||||
let score = response
|
||||
.trim()
|
||||
.parse::<f32>()
|
||||
.unwrap_or(0.5)
|
||||
.min(1.0)
|
||||
.max(0.0);
|
||||
|
||||
Ok(score)
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "ai-analysis"))]
|
||||
pub async fn calculate_priority_score(&self, _content: &str, _user_context: Option<&str>) -> Result<f32> {
|
||||
Ok(0.5) // デフォルトスコア
|
||||
}
|
||||
|
||||
/// AI解釈と心理判定を同時に実行
|
||||
pub async fn analyze(&self, content: &str, user_context: Option<&str>) -> Result<(String, f32)> {
|
||||
let interpreted = self.interpret_content(content).await?;
|
||||
let score = self.calculate_priority_score(content, user_context).await?;
|
||||
Ok((interpreted, score))
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for AIInterpreter {
|
||||
fn default() -> Self {
|
||||
Self::new()
|
||||
}
|
||||
}
|
||||
@@ -1,2 +1,3 @@
|
||||
pub mod memory;
|
||||
pub mod mcp;
|
||||
pub mod mcp;
|
||||
pub mod ai_interpreter;
|
||||
@@ -4,11 +4,15 @@ use serde::{Deserialize, Serialize};
|
||||
use std::collections::HashMap;
|
||||
use std::path::PathBuf;
|
||||
use uuid::Uuid;
|
||||
use crate::ai_interpreter::AIInterpreter;
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct Memory {
|
||||
pub id: String,
|
||||
pub content: String,
|
||||
pub interpreted_content: String, // AI解釈後のコンテンツ
|
||||
pub priority_score: f32, // 心理判定スコア (0.0-1.0)
|
||||
pub user_context: Option<String>, // ユーザー固有性
|
||||
pub created_at: DateTime<Utc>,
|
||||
pub updated_at: DateTime<Utc>,
|
||||
}
|
||||
@@ -67,6 +71,9 @@ pub struct MemoryManager {
|
||||
memories: HashMap<String, Memory>,
|
||||
conversations: HashMap<String, Conversation>,
|
||||
data_file: PathBuf,
|
||||
max_memories: usize, // 最大記憶数
|
||||
min_priority_score: f32, // 最小優先度スコア (0.0-1.0)
|
||||
ai_interpreter: AIInterpreter, // AI解釈エンジン
|
||||
}
|
||||
|
||||
impl MemoryManager {
|
||||
@@ -91,23 +98,68 @@ impl MemoryManager {
|
||||
memories,
|
||||
conversations,
|
||||
data_file,
|
||||
max_memories: 100, // デフォルト: 100件
|
||||
min_priority_score: 0.3, // デフォルト: 0.3以上
|
||||
ai_interpreter: AIInterpreter::new(),
|
||||
})
|
||||
}
|
||||
|
||||
pub fn create_memory(&mut self, content: &str) -> Result<String> {
|
||||
let id = Uuid::new_v4().to_string();
|
||||
let now = Utc::now();
|
||||
|
||||
|
||||
let memory = Memory {
|
||||
id: id.clone(),
|
||||
content: content.to_string(),
|
||||
interpreted_content: content.to_string(), // 後でAI解釈を実装
|
||||
priority_score: 0.5, // 後で心理判定を実装
|
||||
user_context: None,
|
||||
created_at: now,
|
||||
updated_at: now,
|
||||
};
|
||||
|
||||
|
||||
self.memories.insert(id.clone(), memory);
|
||||
|
||||
// 容量制限チェック
|
||||
self.prune_memories_if_needed()?;
|
||||
|
||||
self.save_data()?;
|
||||
|
||||
|
||||
Ok(id)
|
||||
}
|
||||
|
||||
/// AI解釈と心理判定を使った記憶作成
|
||||
pub async fn create_memory_with_ai(
|
||||
&mut self,
|
||||
content: &str,
|
||||
user_context: Option<&str>,
|
||||
) -> Result<String> {
|
||||
let id = Uuid::new_v4().to_string();
|
||||
let now = Utc::now();
|
||||
|
||||
// AI解釈と心理判定を実行
|
||||
let (interpreted_content, priority_score) = self
|
||||
.ai_interpreter
|
||||
.analyze(content, user_context)
|
||||
.await?;
|
||||
|
||||
let memory = Memory {
|
||||
id: id.clone(),
|
||||
content: content.to_string(),
|
||||
interpreted_content,
|
||||
priority_score,
|
||||
user_context: user_context.map(|s| s.to_string()),
|
||||
created_at: now,
|
||||
updated_at: now,
|
||||
};
|
||||
|
||||
self.memories.insert(id.clone(), memory);
|
||||
|
||||
// 容量制限チェック
|
||||
self.prune_memories_if_needed()?;
|
||||
|
||||
self.save_data()?;
|
||||
|
||||
Ok(id)
|
||||
}
|
||||
|
||||
@@ -131,6 +183,34 @@ impl MemoryManager {
|
||||
}
|
||||
}
|
||||
|
||||
// 容量制限: 優先度が低いものから削除
|
||||
fn prune_memories_if_needed(&mut self) -> Result<()> {
|
||||
if self.memories.len() <= self.max_memories {
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
// 優先度でソートして、低いものから削除
|
||||
let mut sorted_memories: Vec<_> = self.memories.iter()
|
||||
.map(|(id, mem)| (id.clone(), mem.priority_score))
|
||||
.collect();
|
||||
|
||||
sorted_memories.sort_by(|a, b| a.1.cmp(&b.1));
|
||||
|
||||
let to_remove = self.memories.len() - self.max_memories;
|
||||
for (id, _) in sorted_memories.iter().take(to_remove) {
|
||||
self.memories.remove(id);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
// 優先度順に記憶を取得
|
||||
pub fn get_memories_by_priority(&self) -> Vec<&Memory> {
|
||||
let mut memories: Vec<_> = self.memories.values().collect();
|
||||
memories.sort_by(|a, b| b.priority_score.cmp(&a.priority_score));
|
||||
memories
|
||||
}
|
||||
|
||||
pub fn search_memories(&self, query: &str) -> Vec<&Memory> {
|
||||
let query_lower = query.to_lowercase();
|
||||
let mut results: Vec<_> = self.memories
|
||||
|
||||
Reference in New Issue
Block a user