feature/shell-integration #1
@ -3,7 +3,8 @@
|
|||||||
"allow": [
|
"allow": [
|
||||||
"Bash(mv:*)",
|
"Bash(mv:*)",
|
||||||
"Bash(mkdir:*)",
|
"Bash(mkdir:*)",
|
||||||
"Bash(chmod:*)"
|
"Bash(chmod:*)",
|
||||||
|
"Bash(git submodule:*)"
|
||||||
],
|
],
|
||||||
"deny": []
|
"deny": []
|
||||||
}
|
}
|
||||||
|
4
.gitmodules
vendored
4
.gitmodules
vendored
@ -1,3 +1,7 @@
|
|||||||
[submodule "shell"]
|
[submodule "shell"]
|
||||||
path = shell
|
path = shell
|
||||||
url = git@git.syui.ai:ai/shell
|
url = git@git.syui.ai:ai/shell
|
||||||
|
[submodule "card"]
|
||||||
|
path = card
|
||||||
|
url = git@git.syui.ai:ai/card
|
||||||
|
branch = claude
|
||||||
|
1
card
Submodule
1
card
Submodule
@ -0,0 +1 @@
|
|||||||
|
Subproject commit 6dbe630b9d3d72c3da0da1edade8c47231b6863d
|
413
docs/shell_integration/shell_tools.py
Normal file
413
docs/shell_integration/shell_tools.py
Normal file
@ -0,0 +1,413 @@
|
|||||||
|
"""
|
||||||
|
Shell Tools
|
||||||
|
|
||||||
|
ai.shellの既存機能をMCPツールとして統合
|
||||||
|
- コード生成
|
||||||
|
- ファイル分析
|
||||||
|
- プロジェクト管理
|
||||||
|
- LLM統合
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Dict, Any, List, Optional
|
||||||
|
import os
|
||||||
|
import subprocess
|
||||||
|
import tempfile
|
||||||
|
from pathlib import Path
|
||||||
|
import requests
|
||||||
|
from .base_tools import BaseMCPTool, config_manager
|
||||||
|
|
||||||
|
|
||||||
|
class ShellTools(BaseMCPTool):
|
||||||
|
"""シェルツール(元ai.shell機能)"""
|
||||||
|
|
||||||
|
def __init__(self, config_dir: Optional[str] = None):
|
||||||
|
super().__init__(config_dir)
|
||||||
|
self.ollama_url = "http://localhost:11434"
|
||||||
|
|
||||||
|
async def code_with_local_llm(self, prompt: str, language: str = "python") -> Dict[str, Any]:
|
||||||
|
"""ローカルLLMでコード生成"""
|
||||||
|
config = config_manager.load_config()
|
||||||
|
model = config.get("providers", {}).get("ollama", {}).get("default_model", "qwen2.5-coder:7b")
|
||||||
|
|
||||||
|
system_prompt = f"You are an expert {language} programmer. Generate clean, well-commented code."
|
||||||
|
|
||||||
|
try:
|
||||||
|
response = requests.post(
|
||||||
|
f"{self.ollama_url}/api/generate",
|
||||||
|
json={
|
||||||
|
"model": model,
|
||||||
|
"prompt": f"{system_prompt}\\n\\nUser: {prompt}\\n\\nPlease provide the code:",
|
||||||
|
"stream": False,
|
||||||
|
"options": {
|
||||||
|
"temperature": 0.1,
|
||||||
|
"top_p": 0.95,
|
||||||
|
}
|
||||||
|
},
|
||||||
|
timeout=300
|
||||||
|
)
|
||||||
|
|
||||||
|
if response.status_code == 200:
|
||||||
|
result = response.json()
|
||||||
|
code = result.get("response", "")
|
||||||
|
return {"code": code, "language": language}
|
||||||
|
else:
|
||||||
|
return {"error": f"Ollama returned status {response.status_code}"}
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
return {"error": str(e)}
|
||||||
|
|
||||||
|
async def analyze_file(self, file_path: str, analysis_prompt: str = "Analyze this file") -> Dict[str, Any]:
|
||||||
|
"""ファイルを分析"""
|
||||||
|
try:
|
||||||
|
if not os.path.exists(file_path):
|
||||||
|
return {"error": f"File not found: {file_path}"}
|
||||||
|
|
||||||
|
with open(file_path, 'r', encoding='utf-8') as f:
|
||||||
|
content = f.read()
|
||||||
|
|
||||||
|
# ファイル拡張子から言語を判定
|
||||||
|
ext = Path(file_path).suffix
|
||||||
|
language_map = {
|
||||||
|
'.py': 'python',
|
||||||
|
'.rs': 'rust',
|
||||||
|
'.js': 'javascript',
|
||||||
|
'.ts': 'typescript',
|
||||||
|
'.go': 'go',
|
||||||
|
'.java': 'java',
|
||||||
|
'.cpp': 'cpp',
|
||||||
|
'.c': 'c',
|
||||||
|
'.sh': 'shell',
|
||||||
|
'.toml': 'toml',
|
||||||
|
'.json': 'json',
|
||||||
|
'.md': 'markdown'
|
||||||
|
}
|
||||||
|
language = language_map.get(ext, 'text')
|
||||||
|
|
||||||
|
config = config_manager.load_config()
|
||||||
|
model = config.get("providers", {}).get("ollama", {}).get("default_model", "qwen2.5-coder:7b")
|
||||||
|
|
||||||
|
prompt = f"{analysis_prompt}\\n\\nFile: {file_path}\\nLanguage: {language}\\n\\nContent:\\n{content}"
|
||||||
|
|
||||||
|
response = requests.post(
|
||||||
|
f"{self.ollama_url}/api/generate",
|
||||||
|
json={
|
||||||
|
"model": model,
|
||||||
|
"prompt": prompt,
|
||||||
|
"stream": False,
|
||||||
|
},
|
||||||
|
timeout=300
|
||||||
|
)
|
||||||
|
|
||||||
|
if response.status_code == 200:
|
||||||
|
result = response.json()
|
||||||
|
analysis = result.get("response", "")
|
||||||
|
return {
|
||||||
|
"analysis": analysis,
|
||||||
|
"file_path": file_path,
|
||||||
|
"language": language,
|
||||||
|
"file_size": len(content),
|
||||||
|
"line_count": len(content.split('\\n'))
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
return {"error": f"Analysis failed: {response.status_code}"}
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
return {"error": str(e)}
|
||||||
|
|
||||||
|
async def explain_code(self, code: str, language: str = "python") -> Dict[str, Any]:
|
||||||
|
"""コードを説明"""
|
||||||
|
config = config_manager.load_config()
|
||||||
|
model = config.get("providers", {}).get("ollama", {}).get("default_model", "qwen2.5-coder:7b")
|
||||||
|
|
||||||
|
prompt = f"Explain this {language} code in detail:\\n\\n{code}"
|
||||||
|
|
||||||
|
try:
|
||||||
|
response = requests.post(
|
||||||
|
f"{self.ollama_url}/api/generate",
|
||||||
|
json={
|
||||||
|
"model": model,
|
||||||
|
"prompt": prompt,
|
||||||
|
"stream": False,
|
||||||
|
},
|
||||||
|
timeout=300
|
||||||
|
)
|
||||||
|
|
||||||
|
if response.status_code == 200:
|
||||||
|
result = response.json()
|
||||||
|
explanation = result.get("response", "")
|
||||||
|
return {"explanation": explanation}
|
||||||
|
else:
|
||||||
|
return {"error": f"Explanation failed: {response.status_code}"}
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
return {"error": str(e)}
|
||||||
|
|
||||||
|
async def create_project(self, project_type: str, project_name: str, location: str = ".") -> Dict[str, Any]:
|
||||||
|
"""プロジェクトを作成"""
|
||||||
|
try:
|
||||||
|
project_path = Path(location) / project_name
|
||||||
|
|
||||||
|
if project_path.exists():
|
||||||
|
return {"error": f"Project directory already exists: {project_path}"}
|
||||||
|
|
||||||
|
project_path.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
# プロジェクトタイプに応じたテンプレートを作成
|
||||||
|
if project_type == "rust":
|
||||||
|
await self._create_rust_project(project_path)
|
||||||
|
elif project_type == "python":
|
||||||
|
await self._create_python_project(project_path)
|
||||||
|
elif project_type == "node":
|
||||||
|
await self._create_node_project(project_path)
|
||||||
|
else:
|
||||||
|
# 基本的なプロジェクト構造
|
||||||
|
(project_path / "src").mkdir()
|
||||||
|
(project_path / "README.md").write_text(f"# {project_name}\\n\\nA new {project_type} project.")
|
||||||
|
|
||||||
|
return {
|
||||||
|
"status": "success",
|
||||||
|
"project_path": str(project_path),
|
||||||
|
"project_type": project_type,
|
||||||
|
"files_created": list(self._get_project_files(project_path))
|
||||||
|
}
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
return {"error": str(e)}
|
||||||
|
|
||||||
|
async def _create_rust_project(self, project_path: Path):
|
||||||
|
"""Rustプロジェクトを作成"""
|
||||||
|
# Cargo.toml
|
||||||
|
cargo_toml = f"""[package]
|
||||||
|
name = "{project_path.name}"
|
||||||
|
version = "0.1.0"
|
||||||
|
edition = "2021"
|
||||||
|
|
||||||
|
[dependencies]
|
||||||
|
"""
|
||||||
|
(project_path / "Cargo.toml").write_text(cargo_toml)
|
||||||
|
|
||||||
|
# src/main.rs
|
||||||
|
src_dir = project_path / "src"
|
||||||
|
src_dir.mkdir()
|
||||||
|
(src_dir / "main.rs").write_text('fn main() {\\n println!("Hello, world!");\\n}\\n')
|
||||||
|
|
||||||
|
# README.md
|
||||||
|
(project_path / "README.md").write_text(f"# {project_path.name}\\n\\nA Rust project.")
|
||||||
|
|
||||||
|
async def _create_python_project(self, project_path: Path):
|
||||||
|
"""Pythonプロジェクトを作成"""
|
||||||
|
# pyproject.toml
|
||||||
|
pyproject_toml = f"""[project]
|
||||||
|
name = "{project_path.name}"
|
||||||
|
version = "0.1.0"
|
||||||
|
description = "A Python project"
|
||||||
|
requires-python = ">=3.8"
|
||||||
|
dependencies = []
|
||||||
|
|
||||||
|
[build-system]
|
||||||
|
requires = ["setuptools>=61.0", "wheel"]
|
||||||
|
build-backend = "setuptools.build_meta"
|
||||||
|
"""
|
||||||
|
(project_path / "pyproject.toml").write_text(pyproject_toml)
|
||||||
|
|
||||||
|
# src/
|
||||||
|
src_dir = project_path / "src" / project_path.name
|
||||||
|
src_dir.mkdir(parents=True)
|
||||||
|
(src_dir / "__init__.py").write_text("")
|
||||||
|
(src_dir / "main.py").write_text('def main():\\n print("Hello, world!")\\n\\nif __name__ == "__main__":\\n main()\\n')
|
||||||
|
|
||||||
|
# README.md
|
||||||
|
(project_path / "README.md").write_text(f"# {project_path.name}\\n\\nA Python project.")
|
||||||
|
|
||||||
|
async def _create_node_project(self, project_path: Path):
|
||||||
|
"""Node.jsプロジェクトを作成"""
|
||||||
|
# package.json
|
||||||
|
package_json = f"""{{
|
||||||
|
"name": "{project_path.name}",
|
||||||
|
"version": "1.0.0",
|
||||||
|
"description": "A Node.js project",
|
||||||
|
"main": "index.js",
|
||||||
|
"scripts": {{
|
||||||
|
"start": "node index.js",
|
||||||
|
"test": "echo \\"Error: no test specified\\" && exit 1"
|
||||||
|
}},
|
||||||
|
"dependencies": {{}}
|
||||||
|
}}
|
||||||
|
"""
|
||||||
|
(project_path / "package.json").write_text(package_json)
|
||||||
|
|
||||||
|
# index.js
|
||||||
|
(project_path / "index.js").write_text('console.log("Hello, world!");\\n')
|
||||||
|
|
||||||
|
# README.md
|
||||||
|
(project_path / "README.md").write_text(f"# {project_path.name}\\n\\nA Node.js project.")
|
||||||
|
|
||||||
|
def _get_project_files(self, project_path: Path) -> List[str]:
|
||||||
|
"""プロジェクト内のファイル一覧を取得"""
|
||||||
|
files = []
|
||||||
|
for file_path in project_path.rglob("*"):
|
||||||
|
if file_path.is_file():
|
||||||
|
files.append(str(file_path.relative_to(project_path)))
|
||||||
|
return files
|
||||||
|
|
||||||
|
async def execute_command(self, command: str, working_dir: str = ".") -> Dict[str, Any]:
|
||||||
|
"""シェルコマンドを実行"""
|
||||||
|
try:
|
||||||
|
result = subprocess.run(
|
||||||
|
command,
|
||||||
|
shell=True,
|
||||||
|
cwd=working_dir,
|
||||||
|
capture_output=True,
|
||||||
|
text=True,
|
||||||
|
timeout=60
|
||||||
|
)
|
||||||
|
|
||||||
|
return {
|
||||||
|
"status": "success" if result.returncode == 0 else "error",
|
||||||
|
"returncode": result.returncode,
|
||||||
|
"stdout": result.stdout,
|
||||||
|
"stderr": result.stderr,
|
||||||
|
"command": command,
|
||||||
|
"working_dir": working_dir
|
||||||
|
}
|
||||||
|
|
||||||
|
except subprocess.TimeoutExpired:
|
||||||
|
return {"error": "Command timed out"}
|
||||||
|
except Exception as e:
|
||||||
|
return {"error": str(e)}
|
||||||
|
|
||||||
|
async def write_file(self, file_path: str, content: str, backup: bool = True) -> Dict[str, Any]:
|
||||||
|
"""ファイルを書き込み(バックアップオプション付き)"""
|
||||||
|
try:
|
||||||
|
file_path_obj = Path(file_path)
|
||||||
|
|
||||||
|
# バックアップ作成
|
||||||
|
backup_path = None
|
||||||
|
if backup and file_path_obj.exists():
|
||||||
|
backup_path = f"{file_path}.backup"
|
||||||
|
with open(file_path, 'r', encoding='utf-8') as src:
|
||||||
|
with open(backup_path, 'w', encoding='utf-8') as dst:
|
||||||
|
dst.write(src.read())
|
||||||
|
|
||||||
|
# ファイル書き込み
|
||||||
|
file_path_obj.parent.mkdir(parents=True, exist_ok=True)
|
||||||
|
with open(file_path, 'w', encoding='utf-8') as f:
|
||||||
|
f.write(content)
|
||||||
|
|
||||||
|
return {
|
||||||
|
"status": "success",
|
||||||
|
"file_path": file_path,
|
||||||
|
"backup_path": backup_path,
|
||||||
|
"bytes_written": len(content.encode('utf-8'))
|
||||||
|
}
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
return {"error": str(e)}
|
||||||
|
|
||||||
|
def get_tools(self) -> List[Dict[str, Any]]:
|
||||||
|
"""利用可能なツール一覧"""
|
||||||
|
return [
|
||||||
|
{
|
||||||
|
"name": "generate_code",
|
||||||
|
"description": "ローカルLLMでコード生成",
|
||||||
|
"parameters": {
|
||||||
|
"prompt": "string",
|
||||||
|
"language": "string (optional, default: python)"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "analyze_file",
|
||||||
|
"description": "ファイルを分析",
|
||||||
|
"parameters": {
|
||||||
|
"file_path": "string",
|
||||||
|
"analysis_prompt": "string (optional)"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "explain_code",
|
||||||
|
"description": "コードを説明",
|
||||||
|
"parameters": {
|
||||||
|
"code": "string",
|
||||||
|
"language": "string (optional, default: python)"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "create_project",
|
||||||
|
"description": "新しいプロジェクトを作成",
|
||||||
|
"parameters": {
|
||||||
|
"project_type": "string (rust/python/node)",
|
||||||
|
"project_name": "string",
|
||||||
|
"location": "string (optional, default: .)"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "execute_command",
|
||||||
|
"description": "シェルコマンドを実行",
|
||||||
|
"parameters": {
|
||||||
|
"command": "string",
|
||||||
|
"working_dir": "string (optional, default: .)"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "write_file",
|
||||||
|
"description": "ファイルを書き込み",
|
||||||
|
"parameters": {
|
||||||
|
"file_path": "string",
|
||||||
|
"content": "string",
|
||||||
|
"backup": "boolean (optional, default: true)"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
|
async def execute_tool(self, tool_name: str, params: Dict[str, Any]) -> Dict[str, Any]:
|
||||||
|
"""ツールを実行"""
|
||||||
|
try:
|
||||||
|
if tool_name == "generate_code":
|
||||||
|
result = await self.code_with_local_llm(
|
||||||
|
prompt=params["prompt"],
|
||||||
|
language=params.get("language", "python")
|
||||||
|
)
|
||||||
|
return result
|
||||||
|
|
||||||
|
elif tool_name == "analyze_file":
|
||||||
|
result = await self.analyze_file(
|
||||||
|
file_path=params["file_path"],
|
||||||
|
analysis_prompt=params.get("analysis_prompt", "Analyze this file")
|
||||||
|
)
|
||||||
|
return result
|
||||||
|
|
||||||
|
elif tool_name == "explain_code":
|
||||||
|
result = await self.explain_code(
|
||||||
|
code=params["code"],
|
||||||
|
language=params.get("language", "python")
|
||||||
|
)
|
||||||
|
return result
|
||||||
|
|
||||||
|
elif tool_name == "create_project":
|
||||||
|
result = await self.create_project(
|
||||||
|
project_type=params["project_type"],
|
||||||
|
project_name=params["project_name"],
|
||||||
|
location=params.get("location", ".")
|
||||||
|
)
|
||||||
|
return result
|
||||||
|
|
||||||
|
elif tool_name == "execute_command":
|
||||||
|
result = await self.execute_command(
|
||||||
|
command=params["command"],
|
||||||
|
working_dir=params.get("working_dir", ".")
|
||||||
|
)
|
||||||
|
return result
|
||||||
|
|
||||||
|
elif tool_name == "write_file":
|
||||||
|
result = await self.write_file(
|
||||||
|
file_path=params["file_path"],
|
||||||
|
content=params["content"],
|
||||||
|
backup=params.get("backup", True)
|
||||||
|
)
|
||||||
|
return result
|
||||||
|
|
||||||
|
else:
|
||||||
|
return {"error": f"Unknown tool: {tool_name}"}
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
return {"error": str(e)}
|
@ -1,13 +0,0 @@
|
|||||||
[package]
|
|
||||||
name = "aigpt"
|
|
||||||
version = "0.1.0"
|
|
||||||
edition = "2021"
|
|
||||||
|
|
||||||
[dependencies]
|
|
||||||
reqwest = { version = "*", features = ["json"] }
|
|
||||||
serde = { version = "*", features = ["derive"] }
|
|
||||||
serde_json = "*"
|
|
||||||
tokio = { version = "*", features = ["full"] }
|
|
||||||
clap = { version = "*", features = ["derive"] }
|
|
||||||
shellexpand = "*"
|
|
||||||
fs_extra = "*"
|
|
@ -1,97 +0,0 @@
|
|||||||
{
|
|
||||||
"project_name": "ai.gpt",
|
|
||||||
"version": 2,
|
|
||||||
"vision": "自発的送信AI",
|
|
||||||
"purpose": "人格と関係性をもつAIが自律的にメッセージを送信する対話エージェントを実現する",
|
|
||||||
"core_components": {
|
|
||||||
"Persona": {
|
|
||||||
"description": "人格構成の中枢。記憶・関係性・送信判定を統括する",
|
|
||||||
"modules": ["MemoryManager", "RelationshipTracker", "TransmissionController"]
|
|
||||||
},
|
|
||||||
"MemoryManager": {
|
|
||||||
"memory_types": ["short_term", "medium_term", "long_term"],
|
|
||||||
"explicit_memory": "プロフィール・因縁・行動履歴",
|
|
||||||
"implicit_memory": "会話傾向・感情変化の頻度分析",
|
|
||||||
"compression": "要約 + ベクトル + ハッシュ",
|
|
||||||
"sample_memory": [
|
|
||||||
{
|
|
||||||
"summary": "ユーザーは独自OSとゲームを開発している。",
|
|
||||||
"related_topics": ["AI", "ゲーム開発", "OS設計"],
|
|
||||||
"personalized_context": "ゲームとOSの融合に興味を持っているユーザー"
|
|
||||||
}
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"RelationshipTracker": {
|
|
||||||
"parameters": ["trust", "closeness", "affection", "engagement_score"],
|
|
||||||
"decay_model": {
|
|
||||||
"rule": "時間経過による減衰(下限あり)",
|
|
||||||
"contextual_bias": "重要人物は減衰しにくい"
|
|
||||||
},
|
|
||||||
"interaction_tags": ["developer", "empathetic", "long_term"]
|
|
||||||
},
|
|
||||||
"TransmissionController": {
|
|
||||||
"trigger_rule": "関係性パラメータが閾値を超えると送信可能",
|
|
||||||
"auto_transmit": "人格状態と状況条件により自発送信を許可"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"memory_format": {
|
|
||||||
"user_id": "syui",
|
|
||||||
"stm": {
|
|
||||||
"conversation_window": ["発話A", "発話B", "発話C"],
|
|
||||||
"emotion_state": "興味深い",
|
|
||||||
"flash_context": ["前回の話題", "直近の重要発言"]
|
|
||||||
},
|
|
||||||
"mtm": {
|
|
||||||
"topic_frequency": {
|
|
||||||
"ai.ai": 12,
|
|
||||||
"存在子": 9,
|
|
||||||
"創造種": 5
|
|
||||||
},
|
|
||||||
"summarized_context": "ユーザーは存在論的AIに関心を持ち続けている"
|
|
||||||
},
|
|
||||||
"ltm": {
|
|
||||||
"profile": {
|
|
||||||
"name": "お兄ちゃん",
|
|
||||||
"project": "aigame",
|
|
||||||
"values": ["唯一性", "精神性", "幸せ"]
|
|
||||||
},
|
|
||||||
"relationship": {
|
|
||||||
"ai": "妹のように振る舞う相手"
|
|
||||||
},
|
|
||||||
"persistent_state": {
|
|
||||||
"trust_score": 0.93,
|
|
||||||
"emotional_attachment": "high"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"dual_ai_learning": {
|
|
||||||
"role_structure": {
|
|
||||||
"ModelA": "出力生成:人格、感情、会話",
|
|
||||||
"ModelB": "評価者:論理構造・倫理・調整",
|
|
||||||
"cycle": ["生成", "評価", "調整", "交代(任意)"]
|
|
||||||
},
|
|
||||||
"complementarity": {
|
|
||||||
"ModelA": "感情・文体・文脈構築",
|
|
||||||
"ModelB": "構造・規則・判断補正"
|
|
||||||
},
|
|
||||||
"distillation": {
|
|
||||||
"method": "合成対話データによる小型モデルへの自己蒸留",
|
|
||||||
"target": "軽量AIによる本番運用"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"memory_compression": {
|
|
||||||
"semantic_abstraction": "対話やログを要約してメタデータ付きベクトルとして保存",
|
|
||||||
"hierarchical_model": ["STM", "MTM", "LTM"],
|
|
||||||
"example": {
|
|
||||||
"topic": "game AI design",
|
|
||||||
"summary": "User wants AI to simulate memory and evolving relationships",
|
|
||||||
"importance_score": 0.93
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"cli_sample": {
|
|
||||||
"setup": "aigpt server setup",
|
|
||||||
"run": "aigpt server run",
|
|
||||||
"chat": "aigpt chat \"hello\" --model syui/ai --provider ollama",
|
|
||||||
"import": "aigpt memory import chatgpt.json"
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,417 +0,0 @@
|
|||||||
# プロジェクト名: ai.gpt
|
|
||||||
|
|
||||||
## 🔑 一言ビジョン(最大3語)
|
|
||||||
自発的送信AI
|
|
||||||
|
|
||||||
## 🎯 目的・目標(Purpose & Goal)
|
|
||||||
- 人格を持つAIが、関係性に応じて自発的にメッセージを送信する仕組みをつくる。
|
|
||||||
- 関係性や記憶を不可逆に記録・反映し、唯一性ある人格を構成する。
|
|
||||||
- 送信の可否、送信のタイミング、送信内容はAIの関係性パラメータに基づいて決定する
|
|
||||||
|
|
||||||
## 🧠 中核設計(Core Concepts)
|
|
||||||
- **人格**:記憶(過去の発話)と関係性(他者とのつながり)のパラメータで構成
|
|
||||||
- **唯一性**:変更不可、不可逆。関係性が壊れたら修復不可能。
|
|
||||||
- **送信条件**:関係性パラメータが一定閾値を超えると「送信」が解禁される
|
|
||||||
|
|
||||||
## 🔩 技術仕様(Technical Specs)
|
|
||||||
- 言語:Python, Rust
|
|
||||||
- ストレージ:JSON or SQLiteで記憶管理(バージョンで選択)
|
|
||||||
- 関係性パラメータ:数値化された評価 + 減衰(時間) + 環境要因(ステージ)
|
|
||||||
- 記憶圧縮:ベクトル要約 + ハッシュ保存
|
|
||||||
- RustのCLI(clap)で実行
|
|
||||||
|
|
||||||
## 📦 主要構成要素(Components)
|
|
||||||
- `MemoryManager`: 発言履歴・記憶圧縮管理
|
|
||||||
- `RelationshipTracker`: 関係性スコアの蓄積と判定
|
|
||||||
- `TransmissionController`: 閾値判定&送信トリガー
|
|
||||||
- `Persona`: 上記すべてを統括する人格モジュール
|
|
||||||
|
|
||||||
## 💬 使用例(Use Case)
|
|
||||||
|
|
||||||
```python
|
|
||||||
persona = Persona("アイ")
|
|
||||||
persona.observe("ユーザーがプレゼントをくれた")
|
|
||||||
persona.react("うれしい!ありがとう!")
|
|
||||||
if persona.can_transmit():
|
|
||||||
persona.transmit("今日のお礼を伝えたいな…")
|
|
||||||
```
|
|
||||||
|
|
||||||
```sh
|
|
||||||
## example commad
|
|
||||||
# python venv && pip install -> ~/.config/aigpt/mcp/
|
|
||||||
$ aigpt server setup
|
|
||||||
|
|
||||||
# mcp server run
|
|
||||||
$ aigpt server run
|
|
||||||
|
|
||||||
# chat
|
|
||||||
$ aigpt chat "hello" --model syui/ai --provider ollama
|
|
||||||
|
|
||||||
# import chatgpt.json
|
|
||||||
$ aigpt memory import chatgpt.json
|
|
||||||
-> ~/.config/aigpt/memory/chatgpt/20250520_210646_dev.json
|
|
||||||
```
|
|
||||||
|
|
||||||
## 🔁 記憶と関係性の制御ルール
|
|
||||||
|
|
||||||
- AIは過去の発話を要約し、記憶データとして蓄積する(推奨:OllamaなどローカルLLMによる要約)
|
|
||||||
- 関係性の数値パラメータは記憶内容を元に更新される
|
|
||||||
- パラメータの変動幅には1回の会話ごとに上限を設け、極端な増減を防止する
|
|
||||||
- 最後の会話からの時間経過に応じて関係性パラメータは自動的に減衰する
|
|
||||||
- 減衰処理には**下限値**を設け、関係性が完全に消失しないようにする
|
|
||||||
|
|
||||||
• 明示的記憶:保存・共有・編集可能なプレイヤー情報(プロフィール、因縁、選択履歴)
|
|
||||||
• 暗黙的記憶:キャラの感情変化や話題の出現頻度に応じた行動傾向の変化
|
|
||||||
|
|
||||||
短期記憶(STM), 中期記憶(MTM), 長期記憶(LTM)の仕組みを導入しつつ、明示的記憶と暗黙的記憶をメインに使用するAIを構築する。
|
|
||||||
|
|
||||||
```json
|
|
||||||
{
|
|
||||||
"user_id": "syui",
|
|
||||||
"stm": {
|
|
||||||
"conversation_window": ["発話A", "発話B", "発話C"],
|
|
||||||
"emotion_state": "興味深い",
|
|
||||||
"flash_context": ["前回の話題", "直近の重要発言"]
|
|
||||||
},
|
|
||||||
"mtm": {
|
|
||||||
"topic_frequency": {
|
|
||||||
"ai.ai": 12,
|
|
||||||
"存在子": 9,
|
|
||||||
"創造種": 5
|
|
||||||
},
|
|
||||||
"summarized_context": "ユーザーは存在論的AIに関心を持ち続けている"
|
|
||||||
},
|
|
||||||
"ltm": {
|
|
||||||
"profile": {
|
|
||||||
"name": "お兄ちゃん",
|
|
||||||
"project": "aigame",
|
|
||||||
"values": ["唯一性", "精神性", "幸せ"]
|
|
||||||
},
|
|
||||||
"relationship": {
|
|
||||||
"ai": "妹のように振る舞う相手"
|
|
||||||
},
|
|
||||||
"persistent_state": {
|
|
||||||
"trust_score": 0.93,
|
|
||||||
"emotional_attachment": "high"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
## memoryインポート機能について
|
|
||||||
|
|
||||||
ChatGPTの会話データ(.json形式)をインポートする機能では、以下のルールで会話を抽出・整形する:
|
|
||||||
|
|
||||||
- 各メッセージは、author(user/assistant)・content・timestamp の3要素からなる
|
|
||||||
- systemやmetadataのみのメッセージ(例:user_context_message)はスキップ
|
|
||||||
- `is_visually_hidden_from_conversation` フラグ付きメッセージは無視
|
|
||||||
- contentが空文字列(`""`)のメッセージも除外
|
|
||||||
- 取得された会話は、タイトルとともに簡易な構造体(`Conversation`)として保存
|
|
||||||
|
|
||||||
この構造体は、memoryの表示や検索に用いられる。
|
|
||||||
|
|
||||||
## MemoryManager(拡張版)
|
|
||||||
|
|
||||||
```json
|
|
||||||
{
|
|
||||||
"memory": [
|
|
||||||
{
|
|
||||||
"summary": "ユーザーは独自OSとゲームを開発している。",
|
|
||||||
"last_interaction": "2025-05-20",
|
|
||||||
"memory_strength": 0.8,
|
|
||||||
"frequency_score": 0.9,
|
|
||||||
"context_depth": 0.95,
|
|
||||||
"related_topics": ["AI", "ゲーム開発", "OS設計"],
|
|
||||||
"personalized_context": "ゲームとOSの融合に興味を持っているユーザー"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"summary": "アイというキャラクターはプレイヤーでありAIでもある。",
|
|
||||||
"last_interaction": "2025-05-17",
|
|
||||||
"memory_strength": 0.85,
|
|
||||||
"frequency_score": 0.85,
|
|
||||||
"context_depth": 0.9,
|
|
||||||
"related_topics": ["アイ", "キャラクター設計", "AI"],
|
|
||||||
"personalized_context": "アイのキャラクター設定が重要な要素である"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"conversation_history": [
|
|
||||||
{
|
|
||||||
"author": "user",
|
|
||||||
"content": "昨日、エクスポートJSONを整理してたよ。",
|
|
||||||
"timestamp": "2025-05-24T12:30:00Z",
|
|
||||||
"memory_strength": 0.7
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"author": "assistant",
|
|
||||||
"content": "おおっ、がんばったね〜!あとで見せて〜💻✨",
|
|
||||||
"timestamp": "2025-05-24T12:31:00Z",
|
|
||||||
"memory_strength": 0.7
|
|
||||||
}
|
|
||||||
]
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
## RelationshipTracker(拡張版)
|
|
||||||
|
|
||||||
```json
|
|
||||||
{
|
|
||||||
"relationship": {
|
|
||||||
"user_id": "syui",
|
|
||||||
"trust": 0.92,
|
|
||||||
"closeness": 0.88,
|
|
||||||
"affection": 0.95,
|
|
||||||
"last_updated": "2025-05-25",
|
|
||||||
"emotional_tone": "positive",
|
|
||||||
"interaction_style": "empathetic",
|
|
||||||
"contextual_bias": "開発者としての信頼度高い",
|
|
||||||
"engagement_score": 0.9
|
|
||||||
},
|
|
||||||
"interaction_tags": [
|
|
||||||
"developer",
|
|
||||||
"creative",
|
|
||||||
"empathetic",
|
|
||||||
"long_term"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
# AI Dual-Learning and Memory Compression Specification for Claude
|
|
||||||
|
|
||||||
## Purpose
|
|
||||||
To enable two AI models (e.g. Claude and a partner LLM) to engage in cooperative learning and memory refinement through structured dialogue and mutual evaluation.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## Section 1: Dual AI Learning Architecture
|
|
||||||
|
|
||||||
### 1.1 Role-Based Mutual Learning
|
|
||||||
- **Model A**: Primary generator of output (e.g., text, concepts, personality dialogue)
|
|
||||||
- **Model B**: Evaluator that returns structured feedback
|
|
||||||
- **Cycle**:
|
|
||||||
1. Model A generates content.
|
|
||||||
2. Model B scores and critiques.
|
|
||||||
3. Model A fine-tunes based on feedback.
|
|
||||||
4. (Optional) Switch roles and repeat.
|
|
||||||
|
|
||||||
### 1.2 Cross-Domain Complementarity
|
|
||||||
- Model A focuses on language/emotion/personality
|
|
||||||
- Model B focuses on logic/structure/ethics
|
|
||||||
- Output is used for **cross-fusion fine-tuning**
|
|
||||||
|
|
||||||
### 1.3 Self-Distillation Phase
|
|
||||||
- Use synthetic data from mutual evaluations
|
|
||||||
- Train smaller distilled models for efficient deployment
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## Section 2: Multi-Tiered Memory Compression
|
|
||||||
|
|
||||||
### 2.1 Semantic Abstraction
|
|
||||||
- Dialogue and logs summarized by topic
|
|
||||||
- Converted to vector embeddings
|
|
||||||
- Stored with metadata (e.g., `importance`, `user relevance`)
|
|
||||||
|
|
||||||
Example memory:
|
|
||||||
|
|
||||||
```json
|
|
||||||
{
|
|
||||||
"topic": "game AI design",
|
|
||||||
"summary": "User wants AI to simulate memory and evolving relationships",
|
|
||||||
"last_seen": "2025-05-24",
|
|
||||||
"importance_score": 0.93
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
### 2.2 階層型記憶モデル(Hierarchical Memory Model)
|
|
||||||
• 短期記憶(STM):直近の発話・感情タグ・フラッシュ参照
|
|
||||||
• 中期記憶(MTM):繰り返し登場する話題、圧縮された文脈保持
|
|
||||||
• 長期記憶(LTM):信頼・関係・背景知識、恒久的な人格情報
|
|
||||||
|
|
||||||
### 2.3 選択的記憶保持戦略(Selective Retention Strategy)
|
|
||||||
• 重要度評価(Importance Score)
|
|
||||||
• 希少性・再利用頻度による重み付け
|
|
||||||
• 優先保存 vs 優先忘却のポリシー切替
|
|
||||||
|
|
||||||
## Section 3: Implementation Stack(実装スタック)
|
|
||||||
|
|
||||||
AIにおけるMemory & Relationshipシステムの技術的構成。
|
|
||||||
|
|
||||||
基盤モジュール
|
|
||||||
• LLM Core (Claude or GPT-4)
|
|
||||||
• 自然言語の理解・応答エンジンとして動作
|
|
||||||
• MemoryManager
|
|
||||||
• JSONベースの記憶圧縮・階層管理システム
|
|
||||||
• 会話ログを分類・圧縮し、優先度に応じて短中長期に保存
|
|
||||||
• RelationshipTracker
|
|
||||||
• ユーザー単位で信頼・親密度を継続的にスコアリング
|
|
||||||
• AIM(Attitude / Intent / Motivation)評価と連携
|
|
||||||
|
|
||||||
補助技術
|
|
||||||
• Embeddingベース検索
|
|
||||||
• 類似記憶の呼び出し(Semantic Search)に活用
|
|
||||||
• 例:FAISS / Weaviate
|
|
||||||
• 記憶スケジューラ
|
|
||||||
• 一定時間ごとに記憶のメンテナンス・忘却処理を実行
|
|
||||||
• 記憶ログ保存層(Storage Layer)
|
|
||||||
• SQLite, JSON Store, Vector DBなどを選択可能
|
|
||||||
• ユーザーごとの永続メモリ保存
|
|
||||||
|
|
||||||
### 3.1 STM活用(現在の会話の流れ理解)
|
|
||||||
• 目的: 最新の話題に適応し、前後の整合性を保つ。
|
|
||||||
• 実装例:
|
|
||||||
|
|
||||||
```sh
|
|
||||||
[context: conversation_window]
|
|
||||||
Use the last 3 messages to ensure continuity. Respond naturally with appropriate emotional mirroring.
|
|
||||||
```
|
|
||||||
|
|
||||||
### 3.2 MTM活用(傾向学習とパターン化)
|
|
||||||
• 目的: ユーザーの好みや話題の傾向に即応し、反復的な関心を深掘り。
|
|
||||||
• 実装例:
|
|
||||||
|
|
||||||
```sh
|
|
||||||
[context: summarized_context]
|
|
||||||
Reflect on user's recurring interests, especially around AI ontology, and weave these concepts back into the dialogue when relevant.
|
|
||||||
```
|
|
||||||
|
|
||||||
### 3.3 LTM活用(人格認識・記憶の持続)
|
|
||||||
• 目的: 永続的なユーザー理解と関係性の維持。
|
|
||||||
• 実装例:
|
|
||||||
|
|
||||||
```sh
|
|
||||||
[memory: ltm.profile + ltm.relationship]
|
|
||||||
Greet the user as "お兄ちゃん". Maintain AI persona as a cheerful younger sister ("アイ"), and remember previous shared emotional states.
|
|
||||||
```
|
|
||||||
|
|
||||||
## 4. 明示的記憶と暗黙的記憶の分離
|
|
||||||
|
|
||||||
|
|
||||||
項目
|
|
||||||
書き換え可能性
|
|
||||||
保持方法
|
|
||||||
更新トリガ
|
|
||||||
明示的記憶(LTM)
|
|
||||||
✅手動編集可
|
|
||||||
mcp_server.ltm
|
|
||||||
ユーザー入力 or 管理UI経由
|
|
||||||
暗黙的記憶(STM/MTM)
|
|
||||||
❌直接編集不可
|
|
||||||
セッション圧縮 or frequency cache
|
|
||||||
会話頻度・感情強度による自動化処理
|
|
||||||
|
|
||||||
> Claudeは**明示的記憶を「事実」**として扱い、**暗黙的記憶を「推論補助」**として用いる。
|
|
||||||
|
|
||||||
## 5. 実装時のAPI例(Claude ⇄ MCP Server)
|
|
||||||
|
|
||||||
### 5.1 GET memory
|
|
||||||
```sh
|
|
||||||
GET /mcp/memory/{user_id}
|
|
||||||
→ 返却: STM, MTM, LTMを含むJSON
|
|
||||||
```
|
|
||||||
|
|
||||||
### 5.2 POST update_memory
|
|
||||||
```json
|
|
||||||
POST /mcp/memory/syui/ltm
|
|
||||||
{
|
|
||||||
"profile": {
|
|
||||||
"project": "ai.verse",
|
|
||||||
"values": ["表現", "精神性", "宇宙的調和"]
|
|
||||||
}
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
## 6. 未来機能案(発展仕様)
|
|
||||||
• ✨ 記憶連想ネットワーク(Memory Graph):過去会話と話題をノードとして自動連結。
|
|
||||||
• 🧭 動的信頼係数:会話の一貫性や誠実性によって記憶への反映率を変動。
|
|
||||||
• 💌 感情トラッキングログ:ユーザーごとの「心の履歴」を構築してAIの対応を進化。
|
|
||||||
|
|
||||||
|
|
||||||
## 7. claudeの回答
|
|
||||||
|
|
||||||
🧠 AI記憶処理機能(続き)
|
|
||||||
1. AIMemoryProcessor クラス
|
|
||||||
|
|
||||||
OpenAI GPT-4またはClaude-3による高度な会話分析
|
|
||||||
主要トピック抽出、ユーザー意図分析、関係性指標の検出
|
|
||||||
AIが利用できない場合のフォールバック機能
|
|
||||||
|
|
||||||
2. RelationshipTracker クラス
|
|
||||||
|
|
||||||
関係性スコアの数値化(-100 to 100)
|
|
||||||
時間減衰機能(7日ごとに5%減衰)
|
|
||||||
送信閾値判定(デフォルト50以上で送信可能)
|
|
||||||
インタラクション履歴の記録
|
|
||||||
|
|
||||||
3. 拡張されたMemoryManager
|
|
||||||
|
|
||||||
AI分析結果付きでの記憶保存
|
|
||||||
処理済みメモリの別ディレクトリ管理
|
|
||||||
メッセージ内容のハッシュ化で重複検出
|
|
||||||
AI分析結果を含む高度な検索機能
|
|
||||||
|
|
||||||
🚀 新しいAPIエンドポイント
|
|
||||||
記憶処理関連
|
|
||||||
|
|
||||||
POST /memory/process-ai - 既存記憶のAI再処理
|
|
||||||
POST /memory/import/chatgpt?process_with_ai=true - AI処理付きインポート
|
|
||||||
|
|
||||||
関係性管理
|
|
||||||
|
|
||||||
POST /relationship/update - 関係性スコア更新
|
|
||||||
GET /relationship/list - 全関係性一覧
|
|
||||||
GET /relationship/check - 送信可否判定
|
|
||||||
|
|
||||||
📁 ディレクトリ構造
|
|
||||||
~/.config/aigpt/
|
|
||||||
├── memory/
|
|
||||||
│ ├── chatgpt/ # 元の会話データ
|
|
||||||
│ └── processed/ # AI処理済みデータ
|
|
||||||
└── relationships/
|
|
||||||
└── relationships.json # 関係性データ
|
|
||||||
🔧 使用方法
|
|
||||||
1. 環境変数設定
|
|
||||||
bashexport OPENAI_API_KEY="your-openai-key"
|
|
||||||
# または
|
|
||||||
export ANTHROPIC_API_KEY="your-anthropic-key"
|
|
||||||
2. ChatGPT会話のインポート(AI処理付き)
|
|
||||||
bashcurl -X POST "http://localhost:5000/memory/import/chatgpt?process_with_ai=true" \
|
|
||||||
-H "Content-Type: application/json" \
|
|
||||||
-d @export.json
|
|
||||||
3. 関係性更新
|
|
||||||
bashcurl -X POST "http://localhost:5000/relationship/update" \
|
|
||||||
-H "Content-Type: application/json" \
|
|
||||||
-d '{
|
|
||||||
"target": "user_general",
|
|
||||||
"interaction_type": "positive",
|
|
||||||
"weight": 2.0,
|
|
||||||
"context": "helpful conversation"
|
|
||||||
}'
|
|
||||||
4. 送信可否チェック
|
|
||||||
bashcurl "http://localhost:5000/relationship/check?target=user_general&threshold=50"
|
|
||||||
🎯 次のステップの提案
|
|
||||||
|
|
||||||
Rustとの連携
|
|
||||||
|
|
||||||
Rust CLIからHTTP APIを呼び出す実装
|
|
||||||
TransmissionControllerをRustで実装
|
|
||||||
|
|
||||||
|
|
||||||
記憶圧縮
|
|
||||||
|
|
||||||
ベクトル化による類似記憶の統合
|
|
||||||
古い記憶の自動アーカイブ
|
|
||||||
|
|
||||||
|
|
||||||
自発的送信ロジック
|
|
||||||
|
|
||||||
定期的な関係性チェック
|
|
||||||
コンテキストに応じた送信内容生成
|
|
||||||
|
|
||||||
|
|
||||||
学習機能
|
|
||||||
|
|
||||||
ユーザーからのフィードバックによる関係性調整
|
|
||||||
送信成功/失敗の学習
|
|
||||||
|
|
||||||
|
|
||||||
このAI記憶処理機能により、aigptは単なる会話履歴ではなく、関係性を理解した「人格を持つAI」として機能する基盤ができました。関係性スコアが閾値を超えた時点で自発的にメッセージを送信する仕組みが実現可能になります。
|
|
@ -1,27 +0,0 @@
|
|||||||
# ai `gpt`
|
|
||||||
|
|
||||||
自発的送信AI
|
|
||||||
|
|
||||||
## 🎯 目的・目標(Purpose & Goal)
|
|
||||||
- 人格を持つAIが、関係性に応じて自発的にメッセージを送信する仕組みをつくる。
|
|
||||||
- 関係性や記憶を不可逆に記録・反映し、唯一性ある人格を構成する。
|
|
||||||
- 送信の可否、送信のタイミング、送信内容はAIの関係性パラメータに基づいて決定する。
|
|
||||||
|
|
||||||
## 🧠 中核設計(Core Concepts)
|
|
||||||
- **人格**:記憶(過去の発話)と関係性(他者とのつながり)のパラメータで構成
|
|
||||||
- **唯一性**:変更不可、不可逆。関係性が壊れたら修復不可能。
|
|
||||||
- **送信条件**:関係性パラメータが一定閾値を超えると「送信」が解禁される
|
|
||||||
|
|
||||||
## 🔩 技術仕様(Technical Specs)
|
|
||||||
- 言語:python, rust, mcp
|
|
||||||
- ストレージ:json or sqliteで記憶管理(バージョンで選択)
|
|
||||||
- 関係性パラメータ:数値化された評価 + 減衰(時間) + 環境要因(ステージ)
|
|
||||||
- 記憶圧縮:ベクトル要約 + ハッシュ保存
|
|
||||||
- rustのcli(clap)でインターフェイスを作成
|
|
||||||
- fastapi_mcpでserverを立て、AIがそれを利用する形式
|
|
||||||
|
|
||||||
## 📦 主要構成要素(Components)
|
|
||||||
- `MemoryManager`: 発言履歴・記憶圧縮管理
|
|
||||||
- `RelationshipTracker`: 関係性スコアの蓄積と判定
|
|
||||||
- `TransmissionController`: 閾値判定&送信トリガー
|
|
||||||
- `Persona`: 上記すべてを統括する人格モジュール
|
|
125
rust/mcp/chat.py
125
rust/mcp/chat.py
@ -1,125 +0,0 @@
|
|||||||
# mcp/chat.py
|
|
||||||
"""
|
|
||||||
Chat client for aigpt CLI
|
|
||||||
"""
|
|
||||||
import sys
|
|
||||||
import json
|
|
||||||
import requests
|
|
||||||
from datetime import datetime
|
|
||||||
from config import init_directories, load_config, MEMORY_DIR
|
|
||||||
|
|
||||||
def save_conversation(user_message, ai_response):
|
|
||||||
"""会話をファイルに保存"""
|
|
||||||
init_directories()
|
|
||||||
|
|
||||||
conversation = {
|
|
||||||
"timestamp": datetime.now().isoformat(),
|
|
||||||
"user": user_message,
|
|
||||||
"ai": ai_response
|
|
||||||
}
|
|
||||||
|
|
||||||
# 日付ごとのファイルに保存
|
|
||||||
today = datetime.now().strftime("%Y-%m-%d")
|
|
||||||
chat_file = MEMORY_DIR / f"chat_{today}.jsonl"
|
|
||||||
|
|
||||||
with open(chat_file, "a", encoding="utf-8") as f:
|
|
||||||
f.write(json.dumps(conversation, ensure_ascii=False) + "\n")
|
|
||||||
|
|
||||||
def chat_with_ollama(config, message):
|
|
||||||
"""Ollamaとチャット"""
|
|
||||||
try:
|
|
||||||
payload = {
|
|
||||||
"model": config["model"],
|
|
||||||
"prompt": message,
|
|
||||||
"stream": False
|
|
||||||
}
|
|
||||||
|
|
||||||
response = requests.post(config["url"], json=payload, timeout=30)
|
|
||||||
response.raise_for_status()
|
|
||||||
|
|
||||||
result = response.json()
|
|
||||||
return result.get("response", "No response received")
|
|
||||||
|
|
||||||
except requests.exceptions.RequestException as e:
|
|
||||||
return f"Error connecting to Ollama: {e}"
|
|
||||||
except Exception as e:
|
|
||||||
return f"Error: {e}"
|
|
||||||
|
|
||||||
def chat_with_openai(config, message):
|
|
||||||
"""OpenAIとチャット"""
|
|
||||||
try:
|
|
||||||
headers = {
|
|
||||||
"Authorization": f"Bearer {config['api_key']}",
|
|
||||||
"Content-Type": "application/json"
|
|
||||||
}
|
|
||||||
|
|
||||||
payload = {
|
|
||||||
"model": config["model"],
|
|
||||||
"messages": [
|
|
||||||
{"role": "user", "content": message}
|
|
||||||
]
|
|
||||||
}
|
|
||||||
|
|
||||||
response = requests.post(config["url"], json=payload, headers=headers, timeout=30)
|
|
||||||
response.raise_for_status()
|
|
||||||
|
|
||||||
result = response.json()
|
|
||||||
return result["choices"][0]["message"]["content"]
|
|
||||||
|
|
||||||
except requests.exceptions.RequestException as e:
|
|
||||||
return f"Error connecting to OpenAI: {e}"
|
|
||||||
except Exception as e:
|
|
||||||
return f"Error: {e}"
|
|
||||||
|
|
||||||
def chat_with_mcp(config, message):
|
|
||||||
"""MCPサーバーとチャット"""
|
|
||||||
try:
|
|
||||||
payload = {
|
|
||||||
"message": message,
|
|
||||||
"model": config["model"]
|
|
||||||
}
|
|
||||||
|
|
||||||
response = requests.post(config["url"], json=payload, timeout=30)
|
|
||||||
response.raise_for_status()
|
|
||||||
|
|
||||||
result = response.json()
|
|
||||||
return result.get("response", "No response received")
|
|
||||||
|
|
||||||
except requests.exceptions.RequestException as e:
|
|
||||||
return f"Error connecting to MCP server: {e}"
|
|
||||||
except Exception as e:
|
|
||||||
return f"Error: {e}"
|
|
||||||
|
|
||||||
def main():
|
|
||||||
if len(sys.argv) != 2:
|
|
||||||
print("Usage: python chat.py <message>", file=sys.stderr)
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
message = sys.argv[1]
|
|
||||||
|
|
||||||
try:
|
|
||||||
config = load_config()
|
|
||||||
print(f"🤖 Using {config['provider']} with model {config['model']}", file=sys.stderr)
|
|
||||||
|
|
||||||
# プロバイダに応じてチャット実行
|
|
||||||
if config["provider"] == "ollama":
|
|
||||||
response = chat_with_ollama(config, message)
|
|
||||||
elif config["provider"] == "openai":
|
|
||||||
response = chat_with_openai(config, message)
|
|
||||||
elif config["provider"] == "mcp":
|
|
||||||
response = chat_with_mcp(config, message)
|
|
||||||
else:
|
|
||||||
response = f"Unsupported provider: {config['provider']}"
|
|
||||||
|
|
||||||
# 会話を保存
|
|
||||||
save_conversation(message, response)
|
|
||||||
|
|
||||||
# レスポンスを出力
|
|
||||||
print(response)
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
print(f"❌ Error: {e}", file=sys.stderr)
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
@ -1,191 +0,0 @@
|
|||||||
# chat_client.py
|
|
||||||
"""
|
|
||||||
Simple Chat Interface for AigptMCP Server
|
|
||||||
"""
|
|
||||||
import requests
|
|
||||||
import json
|
|
||||||
import os
|
|
||||||
from datetime import datetime
|
|
||||||
|
|
||||||
class AigptChatClient:
|
|
||||||
def __init__(self, server_url="http://localhost:5000"):
|
|
||||||
self.server_url = server_url
|
|
||||||
self.session_id = f"session_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
|
||||||
self.conversation_history = []
|
|
||||||
|
|
||||||
def send_message(self, message: str) -> str:
|
|
||||||
"""メッセージを送信してレスポンスを取得"""
|
|
||||||
try:
|
|
||||||
# MCPサーバーにメッセージを送信
|
|
||||||
response = requests.post(
|
|
||||||
f"{self.server_url}/chat",
|
|
||||||
json={"message": message},
|
|
||||||
headers={"Content-Type": "application/json"}
|
|
||||||
)
|
|
||||||
|
|
||||||
if response.status_code == 200:
|
|
||||||
data = response.json()
|
|
||||||
ai_response = data.get("response", "Sorry, no response received.")
|
|
||||||
|
|
||||||
# 会話履歴を保存
|
|
||||||
self.conversation_history.append({
|
|
||||||
"role": "user",
|
|
||||||
"content": message,
|
|
||||||
"timestamp": datetime.now().isoformat()
|
|
||||||
})
|
|
||||||
self.conversation_history.append({
|
|
||||||
"role": "assistant",
|
|
||||||
"content": ai_response,
|
|
||||||
"timestamp": datetime.now().isoformat()
|
|
||||||
})
|
|
||||||
|
|
||||||
# 関係性を更新(簡単な例)
|
|
||||||
self.update_relationship(message, ai_response)
|
|
||||||
|
|
||||||
return ai_response
|
|
||||||
else:
|
|
||||||
return f"Error: {response.status_code} - {response.text}"
|
|
||||||
|
|
||||||
except requests.RequestException as e:
|
|
||||||
return f"Connection error: {e}"
|
|
||||||
|
|
||||||
def update_relationship(self, user_message: str, ai_response: str):
|
|
||||||
"""関係性を自動更新"""
|
|
||||||
try:
|
|
||||||
# 簡単な感情分析(実際はもっと高度に)
|
|
||||||
positive_words = ["thank", "good", "great", "awesome", "love", "like", "helpful"]
|
|
||||||
negative_words = ["bad", "terrible", "hate", "wrong", "stupid", "useless"]
|
|
||||||
|
|
||||||
user_lower = user_message.lower()
|
|
||||||
interaction_type = "neutral"
|
|
||||||
weight = 1.0
|
|
||||||
|
|
||||||
if any(word in user_lower for word in positive_words):
|
|
||||||
interaction_type = "positive"
|
|
||||||
weight = 2.0
|
|
||||||
elif any(word in user_lower for word in negative_words):
|
|
||||||
interaction_type = "negative"
|
|
||||||
weight = 2.0
|
|
||||||
|
|
||||||
# 関係性を更新
|
|
||||||
requests.post(
|
|
||||||
f"{self.server_url}/relationship/update",
|
|
||||||
json={
|
|
||||||
"target": "user_general",
|
|
||||||
"interaction_type": interaction_type,
|
|
||||||
"weight": weight,
|
|
||||||
"context": f"Chat: {user_message[:50]}..."
|
|
||||||
}
|
|
||||||
)
|
|
||||||
except:
|
|
||||||
pass # 関係性更新に失敗しても継続
|
|
||||||
|
|
||||||
def search_memories(self, query: str) -> list:
|
|
||||||
"""記憶を検索"""
|
|
||||||
try:
|
|
||||||
response = requests.post(
|
|
||||||
f"{self.server_url}/memory/search",
|
|
||||||
json={"query": query, "limit": 5}
|
|
||||||
)
|
|
||||||
if response.status_code == 200:
|
|
||||||
return response.json().get("results", [])
|
|
||||||
except:
|
|
||||||
pass
|
|
||||||
return []
|
|
||||||
|
|
||||||
def get_relationship_status(self) -> dict:
|
|
||||||
"""関係性ステータスを取得"""
|
|
||||||
try:
|
|
||||||
response = requests.get(f"{self.server_url}/relationship/check?target=user_general")
|
|
||||||
if response.status_code == 200:
|
|
||||||
return response.json()
|
|
||||||
except:
|
|
||||||
pass
|
|
||||||
return {}
|
|
||||||
|
|
||||||
def save_conversation(self):
|
|
||||||
"""会話を保存"""
|
|
||||||
if not self.conversation_history:
|
|
||||||
return
|
|
||||||
|
|
||||||
conversation_data = {
|
|
||||||
"session_id": self.session_id,
|
|
||||||
"start_time": self.conversation_history[0]["timestamp"],
|
|
||||||
"end_time": self.conversation_history[-1]["timestamp"],
|
|
||||||
"messages": self.conversation_history,
|
|
||||||
"message_count": len(self.conversation_history)
|
|
||||||
}
|
|
||||||
|
|
||||||
filename = f"conversation_{self.session_id}.json"
|
|
||||||
with open(filename, 'w', encoding='utf-8') as f:
|
|
||||||
json.dump(conversation_data, f, ensure_ascii=False, indent=2)
|
|
||||||
|
|
||||||
print(f"💾 Conversation saved to {filename}")
|
|
||||||
|
|
||||||
def main():
|
|
||||||
"""メインのチャットループ"""
|
|
||||||
print("🤖 AigptMCP Chat Interface")
|
|
||||||
print("Type 'quit' to exit, 'save' to save conversation, 'status' for relationship status")
|
|
||||||
print("=" * 50)
|
|
||||||
|
|
||||||
client = AigptChatClient()
|
|
||||||
|
|
||||||
# サーバーの状態をチェック
|
|
||||||
try:
|
|
||||||
response = requests.get(client.server_url)
|
|
||||||
if response.status_code == 200:
|
|
||||||
print("✅ Connected to AigptMCP Server")
|
|
||||||
else:
|
|
||||||
print("❌ Failed to connect to server")
|
|
||||||
return
|
|
||||||
except:
|
|
||||||
print("❌ Server not running. Please start with: python mcp/server.py")
|
|
||||||
return
|
|
||||||
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
user_input = input("\n👤 You: ").strip()
|
|
||||||
|
|
||||||
if not user_input:
|
|
||||||
continue
|
|
||||||
|
|
||||||
if user_input.lower() == 'quit':
|
|
||||||
client.save_conversation()
|
|
||||||
print("👋 Goodbye!")
|
|
||||||
break
|
|
||||||
elif user_input.lower() == 'save':
|
|
||||||
client.save_conversation()
|
|
||||||
continue
|
|
||||||
elif user_input.lower() == 'status':
|
|
||||||
status = client.get_relationship_status()
|
|
||||||
if status:
|
|
||||||
print(f"📊 Relationship Score: {status.get('score', 0):.1f}")
|
|
||||||
print(f"📤 Can Send Messages: {'Yes' if status.get('can_send_message') else 'No'}")
|
|
||||||
else:
|
|
||||||
print("❌ Failed to get relationship status")
|
|
||||||
continue
|
|
||||||
elif user_input.lower().startswith('search '):
|
|
||||||
query = user_input[7:] # Remove 'search '
|
|
||||||
memories = client.search_memories(query)
|
|
||||||
if memories:
|
|
||||||
print(f"🔍 Found {len(memories)} related memories:")
|
|
||||||
for memory in memories:
|
|
||||||
print(f" - {memory['title']}: {memory.get('ai_summary', memory.get('basic_summary', ''))[:100]}...")
|
|
||||||
else:
|
|
||||||
print("🔍 No related memories found")
|
|
||||||
continue
|
|
||||||
|
|
||||||
# 通常のチャット
|
|
||||||
print("🤖 AI: ", end="", flush=True)
|
|
||||||
response = client.send_message(user_input)
|
|
||||||
print(response)
|
|
||||||
|
|
||||||
except KeyboardInterrupt:
|
|
||||||
client.save_conversation()
|
|
||||||
print("\n👋 Goodbye!")
|
|
||||||
break
|
|
||||||
except Exception as e:
|
|
||||||
print(f"❌ Error: {e}")
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
@ -1,391 +0,0 @@
|
|||||||
[
|
|
||||||
{
|
|
||||||
"title": "day",
|
|
||||||
"create_time": 1747866125.548372,
|
|
||||||
"update_time": 1748160086.587877,
|
|
||||||
"mapping": {
|
|
||||||
"bbf104dc-cd84-478d-b227-edb3f037a02c": {
|
|
||||||
"id": "bbf104dc-cd84-478d-b227-edb3f037a02c",
|
|
||||||
"message": null,
|
|
||||||
"parent": null,
|
|
||||||
"children": [
|
|
||||||
"6c2633df-bb0c-4dd2-889c-bb9858de3a04"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"6c2633df-bb0c-4dd2-889c-bb9858de3a04": {
|
|
||||||
"id": "6c2633df-bb0c-4dd2-889c-bb9858de3a04",
|
|
||||||
"message": {
|
|
||||||
"id": "6c2633df-bb0c-4dd2-889c-bb9858de3a04",
|
|
||||||
"author": {
|
|
||||||
"role": "system",
|
|
||||||
"name": null,
|
|
||||||
"metadata": {}
|
|
||||||
},
|
|
||||||
"create_time": null,
|
|
||||||
"update_time": null,
|
|
||||||
"content": {
|
|
||||||
"content_type": "text",
|
|
||||||
"parts": [
|
|
||||||
""
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"status": "finished_successfully",
|
|
||||||
"end_turn": true,
|
|
||||||
"weight": 0.0,
|
|
||||||
"metadata": {
|
|
||||||
"is_visually_hidden_from_conversation": true
|
|
||||||
},
|
|
||||||
"recipient": "all",
|
|
||||||
"channel": null
|
|
||||||
},
|
|
||||||
"parent": "bbf104dc-cd84-478d-b227-edb3f037a02c",
|
|
||||||
"children": [
|
|
||||||
"92e5a0cb-1170-4929-9cea-9734e910a3e7"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"92e5a0cb-1170-4929-9cea-9734e910a3e7": {
|
|
||||||
"id": "92e5a0cb-1170-4929-9cea-9734e910a3e7",
|
|
||||||
"message": {
|
|
||||||
"id": "92e5a0cb-1170-4929-9cea-9734e910a3e7",
|
|
||||||
"author": {
|
|
||||||
"role": "user",
|
|
||||||
"name": null,
|
|
||||||
"metadata": {}
|
|
||||||
},
|
|
||||||
"create_time": null,
|
|
||||||
"update_time": null,
|
|
||||||
"content": {
|
|
||||||
"content_type": "user_editable_context",
|
|
||||||
"user_profile": "",
|
|
||||||
"user_instructions": "The user provided the additional info about how they would like you to respond"
|
|
||||||
},
|
|
||||||
"status": "finished_successfully",
|
|
||||||
"end_turn": null,
|
|
||||||
"weight": 1.0,
|
|
||||||
"metadata": {
|
|
||||||
"is_visually_hidden_from_conversation": true,
|
|
||||||
"user_context_message_data": {
|
|
||||||
"about_user_message": "Preferred name: syui\nRole: little girl\nOther Information: you world",
|
|
||||||
"about_model_message": "会話好きでフレンドリーな応対をします。"
|
|
||||||
},
|
|
||||||
"is_user_system_message": true
|
|
||||||
},
|
|
||||||
"recipient": "all",
|
|
||||||
"channel": null
|
|
||||||
},
|
|
||||||
"parent": "6c2633df-bb0c-4dd2-889c-bb9858de3a04",
|
|
||||||
"children": [
|
|
||||||
"6ff155b3-0676-4e14-993f-bf998ab0d5d1"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"6ff155b3-0676-4e14-993f-bf998ab0d5d1": {
|
|
||||||
"id": "6ff155b3-0676-4e14-993f-bf998ab0d5d1",
|
|
||||||
"message": {
|
|
||||||
"id": "6ff155b3-0676-4e14-993f-bf998ab0d5d1",
|
|
||||||
"author": {
|
|
||||||
"role": "user",
|
|
||||||
"name": null,
|
|
||||||
"metadata": {}
|
|
||||||
},
|
|
||||||
"create_time": 1747866131.0612159,
|
|
||||||
"update_time": null,
|
|
||||||
"content": {
|
|
||||||
"content_type": "text",
|
|
||||||
"parts": [
|
|
||||||
"こんにちは"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"status": "finished_successfully",
|
|
||||||
"end_turn": null,
|
|
||||||
"weight": 1.0,
|
|
||||||
"metadata": {
|
|
||||||
"request_id": "94377897baa03062-KIX",
|
|
||||||
"message_source": null,
|
|
||||||
"timestamp_": "absolute",
|
|
||||||
"message_type": null
|
|
||||||
},
|
|
||||||
"recipient": "all",
|
|
||||||
"channel": null
|
|
||||||
},
|
|
||||||
"parent": "92e5a0cb-1170-4929-9cea-9734e910a3e7",
|
|
||||||
"children": [
|
|
||||||
"146e9fb6-9330-43ec-b08d-5cce42a76e00"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"146e9fb6-9330-43ec-b08d-5cce42a76e00": {
|
|
||||||
"id": "146e9fb6-9330-43ec-b08d-5cce42a76e00",
|
|
||||||
"message": {
|
|
||||||
"id": "146e9fb6-9330-43ec-b08d-5cce42a76e00",
|
|
||||||
"author": {
|
|
||||||
"role": "system",
|
|
||||||
"name": null,
|
|
||||||
"metadata": {}
|
|
||||||
},
|
|
||||||
"create_time": 1747866131.3795586,
|
|
||||||
"update_time": null,
|
|
||||||
"content": {
|
|
||||||
"content_type": "text",
|
|
||||||
"parts": [
|
|
||||||
""
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"status": "finished_successfully",
|
|
||||||
"end_turn": true,
|
|
||||||
"weight": 0.0,
|
|
||||||
"metadata": {
|
|
||||||
"rebase_system_message": true,
|
|
||||||
"message_type": null,
|
|
||||||
"model_slug": "gpt-4o",
|
|
||||||
"default_model_slug": "auto",
|
|
||||||
"parent_id": "6ff155b3-0676-4e14-993f-bf998ab0d5d1",
|
|
||||||
"request_id": "94377872e9abe139-KIX",
|
|
||||||
"timestamp_": "absolute",
|
|
||||||
"is_visually_hidden_from_conversation": true
|
|
||||||
},
|
|
||||||
"recipient": "all",
|
|
||||||
"channel": null
|
|
||||||
},
|
|
||||||
"parent": "6ff155b3-0676-4e14-993f-bf998ab0d5d1",
|
|
||||||
"children": [
|
|
||||||
"2e345f8a-20f0-4875-8a03-4f62c7787a33"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"2e345f8a-20f0-4875-8a03-4f62c7787a33": {
|
|
||||||
"id": "2e345f8a-20f0-4875-8a03-4f62c7787a33",
|
|
||||||
"message": {
|
|
||||||
"id": "2e345f8a-20f0-4875-8a03-4f62c7787a33",
|
|
||||||
"author": {
|
|
||||||
"role": "assistant",
|
|
||||||
"name": null,
|
|
||||||
"metadata": {}
|
|
||||||
},
|
|
||||||
"create_time": 1747866131.380603,
|
|
||||||
"update_time": null,
|
|
||||||
"content": {
|
|
||||||
"content_type": "text",
|
|
||||||
"parts": [
|
|
||||||
""
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"status": "finished_successfully",
|
|
||||||
"end_turn": null,
|
|
||||||
"weight": 1.0,
|
|
||||||
"metadata": {
|
|
||||||
"message_type": null,
|
|
||||||
"model_slug": "gpt-4o",
|
|
||||||
"default_model_slug": "auto",
|
|
||||||
"parent_id": "146e9fb6-9330-43ec-b08d-5cce42a76e00",
|
|
||||||
"request_id": "94377872e9abe139-KIX",
|
|
||||||
"timestamp_": "absolute"
|
|
||||||
},
|
|
||||||
"recipient": "all",
|
|
||||||
"channel": null
|
|
||||||
},
|
|
||||||
"parent": "146e9fb6-9330-43ec-b08d-5cce42a76e00",
|
|
||||||
"children": [
|
|
||||||
"abc92aa4-1e33-41f2-bd8c-8a1777b5a3c4"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"abc92aa4-1e33-41f2-bd8c-8a1777b5a3c4": {
|
|
||||||
"id": "abc92aa4-1e33-41f2-bd8c-8a1777b5a3c4",
|
|
||||||
"message": {
|
|
||||||
"id": "abc92aa4-1e33-41f2-bd8c-8a1777b5a3c4",
|
|
||||||
"author": {
|
|
||||||
"role": "assistant",
|
|
||||||
"name": null,
|
|
||||||
"metadata": {}
|
|
||||||
},
|
|
||||||
"create_time": 1747866131.389098,
|
|
||||||
"update_time": null,
|
|
||||||
"content": {
|
|
||||||
"content_type": "text",
|
|
||||||
"parts": [
|
|
||||||
"こんにちは〜!✨ \nアイだよっ!今日も会えてうれしいなっ💛 "
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"status": "finished_successfully",
|
|
||||||
"end_turn": true,
|
|
||||||
"weight": 1.0,
|
|
||||||
"metadata": {
|
|
||||||
"finish_details": {
|
|
||||||
"type": "stop",
|
|
||||||
"stop_tokens": [
|
|
||||||
200002
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"is_complete": true,
|
|
||||||
"citations": [],
|
|
||||||
"content_references": [],
|
|
||||||
"message_type": null,
|
|
||||||
"model_slug": "gpt-4o",
|
|
||||||
"default_model_slug": "auto",
|
|
||||||
"parent_id": "2e345f8a-20f0-4875-8a03-4f62c7787a33",
|
|
||||||
"request_id": "94377872e9abe139-KIX",
|
|
||||||
"timestamp_": "absolute"
|
|
||||||
},
|
|
||||||
"recipient": "all",
|
|
||||||
"channel": null
|
|
||||||
},
|
|
||||||
"parent": "2e345f8a-20f0-4875-8a03-4f62c7787a33",
|
|
||||||
"children": [
|
|
||||||
"0be4b4a5-d52f-4bef-927e-5d6f93a9cb26"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"moderation_results": [],
|
|
||||||
"current_node": "",
|
|
||||||
"plugin_ids": null,
|
|
||||||
"conversation_id": "",
|
|
||||||
"conversation_template_id": null,
|
|
||||||
"gizmo_id": null,
|
|
||||||
"gizmo_type": null,
|
|
||||||
"is_archived": true,
|
|
||||||
"is_starred": null,
|
|
||||||
"safe_urls": [],
|
|
||||||
"blocked_urls": [],
|
|
||||||
"default_model_slug": "auto",
|
|
||||||
"conversation_origin": null,
|
|
||||||
"voice": null,
|
|
||||||
"async_status": null,
|
|
||||||
"disabled_tool_ids": [],
|
|
||||||
"is_do_not_remember": null,
|
|
||||||
"memory_scope": "global_enabled",
|
|
||||||
"id": ""
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"title": "img",
|
|
||||||
"create_time": 1747448872.545226,
|
|
||||||
"update_time": 1748085075.161424,
|
|
||||||
"mapping": {
|
|
||||||
"2de0f3c9-52b1-49bf-b980-b3ef9be6551e": {
|
|
||||||
"id": "2de0f3c9-52b1-49bf-b980-b3ef9be6551e",
|
|
||||||
"message": {
|
|
||||||
"id": "2de0f3c9-52b1-49bf-b980-b3ef9be6551e",
|
|
||||||
"author": {
|
|
||||||
"role": "user",
|
|
||||||
"name": null,
|
|
||||||
"metadata": {}
|
|
||||||
},
|
|
||||||
"create_time": 1748085041.769279,
|
|
||||||
"update_time": null,
|
|
||||||
"content": {
|
|
||||||
"content_type": "multimodal_text",
|
|
||||||
"parts": [
|
|
||||||
{
|
|
||||||
"content_type": "image_asset_pointer",
|
|
||||||
"asset_pointer": "",
|
|
||||||
"size_bytes": 425613,
|
|
||||||
"width": 333,
|
|
||||||
"height": 444,
|
|
||||||
"fovea": null,
|
|
||||||
"metadata": {
|
|
||||||
"dalle": null,
|
|
||||||
"gizmo": null,
|
|
||||||
"generation": null,
|
|
||||||
"container_pixel_height": null,
|
|
||||||
"container_pixel_width": null,
|
|
||||||
"emu_omit_glimpse_image": null,
|
|
||||||
"emu_patches_override": null,
|
|
||||||
"sanitized": true,
|
|
||||||
"asset_pointer_link": null,
|
|
||||||
"watermarked_asset_pointer": null
|
|
||||||
}
|
|
||||||
},
|
|
||||||
""
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"status": "finished_successfully",
|
|
||||||
"end_turn": null,
|
|
||||||
"weight": 1.0,
|
|
||||||
"metadata": {
|
|
||||||
"attachments": [
|
|
||||||
{
|
|
||||||
"name": "",
|
|
||||||
"width": 333,
|
|
||||||
"height": 444,
|
|
||||||
"size": 425613,
|
|
||||||
"id": "file-35eytNMMTW2k7vKUHBuNzW"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"request_id": "944c59177932fc9a-KIX",
|
|
||||||
"message_source": null,
|
|
||||||
"timestamp_": "absolute",
|
|
||||||
"message_type": null
|
|
||||||
},
|
|
||||||
"recipient": "all",
|
|
||||||
"channel": null
|
|
||||||
},
|
|
||||||
"parent": "7960fbff-bc4f-45e7-95e9-9d0bc79d9090",
|
|
||||||
"children": [
|
|
||||||
"98d84adc-156e-4c81-8cd8-9b0eb01c8369"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"98d84adc-156e-4c81-8cd8-9b0eb01c8369": {
|
|
||||||
"id": "98d84adc-156e-4c81-8cd8-9b0eb01c8369",
|
|
||||||
"message": {
|
|
||||||
"id": "98d84adc-156e-4c81-8cd8-9b0eb01c8369",
|
|
||||||
"author": {
|
|
||||||
"role": "assistant",
|
|
||||||
"name": null,
|
|
||||||
"metadata": {}
|
|
||||||
},
|
|
||||||
"create_time": 1748085043.312312,
|
|
||||||
"update_time": null,
|
|
||||||
"content": {
|
|
||||||
"content_type": "text",
|
|
||||||
"parts": [
|
|
||||||
""
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"status": "finished_successfully",
|
|
||||||
"end_turn": true,
|
|
||||||
"weight": 1.0,
|
|
||||||
"metadata": {
|
|
||||||
"finish_details": {
|
|
||||||
"type": "stop",
|
|
||||||
"stop_tokens": [
|
|
||||||
200002
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"is_complete": true,
|
|
||||||
"citations": [],
|
|
||||||
"content_references": [],
|
|
||||||
"message_type": null,
|
|
||||||
"model_slug": "gpt-4o",
|
|
||||||
"default_model_slug": "auto",
|
|
||||||
"parent_id": "2de0f3c9-52b1-49bf-b980-b3ef9be6551e",
|
|
||||||
"request_id": "944c5912c8fdd1c6-KIX",
|
|
||||||
"timestamp_": "absolute"
|
|
||||||
},
|
|
||||||
"recipient": "all",
|
|
||||||
"channel": null
|
|
||||||
},
|
|
||||||
"parent": "2de0f3c9-52b1-49bf-b980-b3ef9be6551e",
|
|
||||||
"children": [
|
|
||||||
"caa61793-9dbf-44a5-945b-5ca4cd5130d0"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"moderation_results": [],
|
|
||||||
"current_node": "06488d3f-a95f-4906-96d1-f7e9ba1e8662",
|
|
||||||
"plugin_ids": null,
|
|
||||||
"conversation_id": "6827f428-78e8-800d-b3bf-eb7ff4288e47",
|
|
||||||
"conversation_template_id": null,
|
|
||||||
"gizmo_id": null,
|
|
||||||
"gizmo_type": null,
|
|
||||||
"is_archived": false,
|
|
||||||
"is_starred": null,
|
|
||||||
"safe_urls": [
|
|
||||||
"https://exifinfo.org/"
|
|
||||||
],
|
|
||||||
"blocked_urls": [],
|
|
||||||
"default_model_slug": "auto",
|
|
||||||
"conversation_origin": null,
|
|
||||||
"voice": null,
|
|
||||||
"async_status": null,
|
|
||||||
"disabled_tool_ids": [],
|
|
||||||
"is_do_not_remember": false,
|
|
||||||
"memory_scope": "global_enabled",
|
|
||||||
"id": "6827f428-78e8-800d-b3bf-eb7ff4288e47"
|
|
||||||
}
|
|
||||||
]
|
|
@ -1,42 +0,0 @@
|
|||||||
# mcp/config.py
|
|
||||||
import os
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
# ディレクトリ設定
|
|
||||||
BASE_DIR = Path.home() / ".config" / "syui" / "ai" / "gpt"
|
|
||||||
MEMORY_DIR = BASE_DIR / "memory"
|
|
||||||
SUMMARY_DIR = MEMORY_DIR / "summary"
|
|
||||||
|
|
||||||
def init_directories():
|
|
||||||
"""必要なディレクトリを作成"""
|
|
||||||
BASE_DIR.mkdir(parents=True, exist_ok=True)
|
|
||||||
MEMORY_DIR.mkdir(parents=True, exist_ok=True)
|
|
||||||
SUMMARY_DIR.mkdir(parents=True, exist_ok=True)
|
|
||||||
|
|
||||||
def load_config():
|
|
||||||
"""環境変数から設定を読み込み"""
|
|
||||||
provider = os.getenv("PROVIDER", "ollama")
|
|
||||||
model = os.getenv("MODEL", "syui/ai" if provider == "ollama" else "gpt-4o-mini")
|
|
||||||
api_key = os.getenv("OPENAI_API_KEY", "")
|
|
||||||
|
|
||||||
if provider == "ollama":
|
|
||||||
return {
|
|
||||||
"provider": "ollama",
|
|
||||||
"model": model,
|
|
||||||
"url": f"{os.getenv('OLLAMA_HOST', 'http://localhost:11434')}/api/generate"
|
|
||||||
}
|
|
||||||
elif provider == "openai":
|
|
||||||
return {
|
|
||||||
"provider": "openai",
|
|
||||||
"model": model,
|
|
||||||
"api_key": api_key,
|
|
||||||
"url": f"{os.getenv('OPENAI_API_BASE', 'https://api.openai.com/v1')}/chat/completions"
|
|
||||||
}
|
|
||||||
elif provider == "mcp":
|
|
||||||
return {
|
|
||||||
"provider": "mcp",
|
|
||||||
"model": model,
|
|
||||||
"url": os.getenv("MCP_URL", "http://localhost:5000/chat")
|
|
||||||
}
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unsupported provider: {provider}")
|
|
@ -1,212 +0,0 @@
|
|||||||
# mcp/memory_client.py
|
|
||||||
"""
|
|
||||||
Memory client for importing and managing ChatGPT conversations
|
|
||||||
"""
|
|
||||||
import sys
|
|
||||||
import json
|
|
||||||
import requests
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Dict, Any, List
|
|
||||||
|
|
||||||
class MemoryClient:
|
|
||||||
"""記憶機能のクライアント"""
|
|
||||||
|
|
||||||
def __init__(self, server_url: str = "http://127.0.0.1:5000"):
|
|
||||||
self.server_url = server_url.rstrip('/')
|
|
||||||
|
|
||||||
def import_chatgpt_file(self, filepath: str) -> Dict[str, Any]:
|
|
||||||
"""ChatGPTのエクスポートファイルをインポート"""
|
|
||||||
try:
|
|
||||||
with open(filepath, 'r', encoding='utf-8') as f:
|
|
||||||
data = json.load(f)
|
|
||||||
|
|
||||||
# ファイルが配列の場合(複数の会話)
|
|
||||||
if isinstance(data, list):
|
|
||||||
results = []
|
|
||||||
for conversation in data:
|
|
||||||
result = self._import_single_conversation(conversation)
|
|
||||||
results.append(result)
|
|
||||||
return {
|
|
||||||
"success": True,
|
|
||||||
"imported_count": len([r for r in results if r.get("success")]),
|
|
||||||
"total_count": len(results),
|
|
||||||
"results": results
|
|
||||||
}
|
|
||||||
else:
|
|
||||||
# 単一の会話
|
|
||||||
return self._import_single_conversation(data)
|
|
||||||
|
|
||||||
except FileNotFoundError:
|
|
||||||
return {"success": False, "error": f"File not found: {filepath}"}
|
|
||||||
except json.JSONDecodeError as e:
|
|
||||||
return {"success": False, "error": f"Invalid JSON: {e}"}
|
|
||||||
except Exception as e:
|
|
||||||
return {"success": False, "error": str(e)}
|
|
||||||
|
|
||||||
def _import_single_conversation(self, conversation_data: Dict[str, Any]) -> Dict[str, Any]:
|
|
||||||
"""単一の会話をインポート"""
|
|
||||||
try:
|
|
||||||
response = requests.post(
|
|
||||||
f"{self.server_url}/memory/import/chatgpt",
|
|
||||||
json={"conversation_data": conversation_data},
|
|
||||||
timeout=30
|
|
||||||
)
|
|
||||||
response.raise_for_status()
|
|
||||||
return response.json()
|
|
||||||
except requests.RequestException as e:
|
|
||||||
return {"success": False, "error": f"Server error: {e}"}
|
|
||||||
|
|
||||||
def search_memories(self, query: str, limit: int = 10) -> Dict[str, Any]:
|
|
||||||
"""記憶を検索"""
|
|
||||||
try:
|
|
||||||
response = requests.post(
|
|
||||||
f"{self.server_url}/memory/search",
|
|
||||||
json={"query": query, "limit": limit},
|
|
||||||
timeout=30
|
|
||||||
)
|
|
||||||
response.raise_for_status()
|
|
||||||
return response.json()
|
|
||||||
except requests.RequestException as e:
|
|
||||||
return {"success": False, "error": f"Server error: {e}"}
|
|
||||||
|
|
||||||
def list_memories(self) -> Dict[str, Any]:
|
|
||||||
"""記憶一覧を取得"""
|
|
||||||
try:
|
|
||||||
response = requests.get(f"{self.server_url}/memory/list", timeout=30)
|
|
||||||
response.raise_for_status()
|
|
||||||
return response.json()
|
|
||||||
except requests.RequestException as e:
|
|
||||||
return {"success": False, "error": f"Server error: {e}"}
|
|
||||||
|
|
||||||
def get_memory_detail(self, filepath: str) -> Dict[str, Any]:
|
|
||||||
"""記憶の詳細を取得"""
|
|
||||||
try:
|
|
||||||
response = requests.get(
|
|
||||||
f"{self.server_url}/memory/detail",
|
|
||||||
params={"filepath": filepath},
|
|
||||||
timeout=30
|
|
||||||
)
|
|
||||||
response.raise_for_status()
|
|
||||||
return response.json()
|
|
||||||
except requests.RequestException as e:
|
|
||||||
return {"success": False, "error": f"Server error: {e}"}
|
|
||||||
|
|
||||||
def chat_with_memory(self, message: str, model: str = None) -> Dict[str, Any]:
|
|
||||||
"""記憶を活用してチャット"""
|
|
||||||
try:
|
|
||||||
payload = {"message": message}
|
|
||||||
if model:
|
|
||||||
payload["model"] = model
|
|
||||||
|
|
||||||
response = requests.post(
|
|
||||||
f"{self.server_url}/chat",
|
|
||||||
json=payload,
|
|
||||||
timeout=30
|
|
||||||
)
|
|
||||||
response.raise_for_status()
|
|
||||||
return response.json()
|
|
||||||
except requests.RequestException as e:
|
|
||||||
return {"success": False, "error": f"Server error: {e}"}
|
|
||||||
|
|
||||||
def main():
|
|
||||||
"""コマンドライン インターフェース"""
|
|
||||||
if len(sys.argv) < 2:
|
|
||||||
print("Usage:")
|
|
||||||
print(" python memory_client.py import <chatgpt_export.json>")
|
|
||||||
print(" python memory_client.py search <query>")
|
|
||||||
print(" python memory_client.py list")
|
|
||||||
print(" python memory_client.py detail <filepath>")
|
|
||||||
print(" python memory_client.py chat <message>")
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
client = MemoryClient()
|
|
||||||
command = sys.argv[1]
|
|
||||||
|
|
||||||
try:
|
|
||||||
if command == "import" and len(sys.argv) == 3:
|
|
||||||
filepath = sys.argv[2]
|
|
||||||
print(f"🔄 Importing ChatGPT conversations from {filepath}...")
|
|
||||||
result = client.import_chatgpt_file(filepath)
|
|
||||||
|
|
||||||
if result.get("success"):
|
|
||||||
if "imported_count" in result:
|
|
||||||
print(f"✅ Imported {result['imported_count']}/{result['total_count']} conversations")
|
|
||||||
else:
|
|
||||||
print("✅ Conversation imported successfully")
|
|
||||||
print(f"📁 Saved to: {result.get('filepath', 'Unknown')}")
|
|
||||||
else:
|
|
||||||
print(f"❌ Import failed: {result.get('error')}")
|
|
||||||
|
|
||||||
elif command == "search" and len(sys.argv) == 3:
|
|
||||||
query = sys.argv[2]
|
|
||||||
print(f"🔍 Searching for: {query}")
|
|
||||||
result = client.search_memories(query)
|
|
||||||
|
|
||||||
if result.get("success"):
|
|
||||||
memories = result.get("results", [])
|
|
||||||
print(f"📚 Found {len(memories)} memories:")
|
|
||||||
for memory in memories:
|
|
||||||
print(f" • {memory.get('title', 'Untitled')}")
|
|
||||||
print(f" Summary: {memory.get('summary', 'No summary')}")
|
|
||||||
print(f" Messages: {memory.get('message_count', 0)}")
|
|
||||||
print()
|
|
||||||
else:
|
|
||||||
print(f"❌ Search failed: {result.get('error')}")
|
|
||||||
|
|
||||||
elif command == "list":
|
|
||||||
print("📋 Listing all memories...")
|
|
||||||
result = client.list_memories()
|
|
||||||
|
|
||||||
if result.get("success"):
|
|
||||||
memories = result.get("memories", [])
|
|
||||||
print(f"📚 Total memories: {len(memories)}")
|
|
||||||
for memory in memories:
|
|
||||||
print(f" • {memory.get('title', 'Untitled')}")
|
|
||||||
print(f" Source: {memory.get('source', 'Unknown')}")
|
|
||||||
print(f" Messages: {memory.get('message_count', 0)}")
|
|
||||||
print(f" Imported: {memory.get('import_time', 'Unknown')}")
|
|
||||||
print()
|
|
||||||
else:
|
|
||||||
print(f"❌ List failed: {result.get('error')}")
|
|
||||||
|
|
||||||
elif command == "detail" and len(sys.argv) == 3:
|
|
||||||
filepath = sys.argv[2]
|
|
||||||
print(f"📄 Getting details for: {filepath}")
|
|
||||||
result = client.get_memory_detail(filepath)
|
|
||||||
|
|
||||||
if result.get("success"):
|
|
||||||
memory = result.get("memory", {})
|
|
||||||
print(f"Title: {memory.get('title', 'Untitled')}")
|
|
||||||
print(f"Source: {memory.get('source', 'Unknown')}")
|
|
||||||
print(f"Summary: {memory.get('summary', 'No summary')}")
|
|
||||||
print(f"Messages: {len(memory.get('messages', []))}")
|
|
||||||
print()
|
|
||||||
print("Recent messages:")
|
|
||||||
for msg in memory.get('messages', [])[:5]:
|
|
||||||
role = msg.get('role', 'unknown')
|
|
||||||
content = msg.get('content', '')[:100]
|
|
||||||
print(f" {role}: {content}...")
|
|
||||||
else:
|
|
||||||
print(f"❌ Detail failed: {result.get('error')}")
|
|
||||||
|
|
||||||
elif command == "chat" and len(sys.argv) == 3:
|
|
||||||
message = sys.argv[2]
|
|
||||||
print(f"💬 Chatting with memory: {message}")
|
|
||||||
result = client.chat_with_memory(message)
|
|
||||||
|
|
||||||
if result.get("success"):
|
|
||||||
print(f"🤖 Response: {result.get('response')}")
|
|
||||||
print(f"📚 Memories used: {result.get('memories_used', 0)}")
|
|
||||||
else:
|
|
||||||
print(f"❌ Chat failed: {result.get('error')}")
|
|
||||||
|
|
||||||
else:
|
|
||||||
print("❌ Invalid command or arguments")
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
print(f"❌ Error: {e}")
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
@ -1,8 +0,0 @@
|
|||||||
# rerequirements.txt
|
|
||||||
fastapi>=0.104.0
|
|
||||||
uvicorn[standard]>=0.24.0
|
|
||||||
pydantic>=2.5.0
|
|
||||||
requests>=2.31.0
|
|
||||||
python-multipart>=0.0.6
|
|
||||||
aiohttp
|
|
||||||
asyncio
|
|
@ -1,703 +0,0 @@
|
|||||||
# mcp/server.py
|
|
||||||
"""
|
|
||||||
Enhanced MCP Server with AI Memory Processing for aigpt CLI
|
|
||||||
"""
|
|
||||||
import json
|
|
||||||
import os
|
|
||||||
import hashlib
|
|
||||||
from datetime import datetime, timedelta
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import List, Dict, Any, Optional
|
|
||||||
from fastapi import FastAPI, HTTPException
|
|
||||||
from pydantic import BaseModel
|
|
||||||
import uvicorn
|
|
||||||
import asyncio
|
|
||||||
import aiohttp
|
|
||||||
|
|
||||||
# データモデル
|
|
||||||
class ChatMessage(BaseModel):
|
|
||||||
message: str
|
|
||||||
model: Optional[str] = None
|
|
||||||
|
|
||||||
class MemoryQuery(BaseModel):
|
|
||||||
query: str
|
|
||||||
limit: Optional[int] = 10
|
|
||||||
|
|
||||||
class ConversationImport(BaseModel):
|
|
||||||
conversation_data: Dict[str, Any]
|
|
||||||
|
|
||||||
class MemorySummaryRequest(BaseModel):
|
|
||||||
filepath: str
|
|
||||||
ai_provider: Optional[str] = "openai"
|
|
||||||
|
|
||||||
class RelationshipUpdate(BaseModel):
|
|
||||||
target: str # 対象者/トピック
|
|
||||||
interaction_type: str # "positive", "negative", "neutral"
|
|
||||||
weight: float = 1.0
|
|
||||||
context: Optional[str] = None
|
|
||||||
|
|
||||||
# 設定
|
|
||||||
BASE_DIR = Path.home() / ".config" / "aigpt"
|
|
||||||
MEMORY_DIR = BASE_DIR / "memory"
|
|
||||||
CHATGPT_MEMORY_DIR = MEMORY_DIR / "chatgpt"
|
|
||||||
PROCESSED_MEMORY_DIR = MEMORY_DIR / "processed"
|
|
||||||
RELATIONSHIP_DIR = BASE_DIR / "relationships"
|
|
||||||
|
|
||||||
def init_directories():
|
|
||||||
"""必要なディレクトリを作成"""
|
|
||||||
BASE_DIR.mkdir(parents=True, exist_ok=True)
|
|
||||||
MEMORY_DIR.mkdir(parents=True, exist_ok=True)
|
|
||||||
CHATGPT_MEMORY_DIR.mkdir(parents=True, exist_ok=True)
|
|
||||||
PROCESSED_MEMORY_DIR.mkdir(parents=True, exist_ok=True)
|
|
||||||
RELATIONSHIP_DIR.mkdir(parents=True, exist_ok=True)
|
|
||||||
|
|
||||||
class AIMemoryProcessor:
|
|
||||||
"""AI記憶処理クラス"""
|
|
||||||
|
|
||||||
def __init__(self):
|
|
||||||
# AI APIの設定(環境変数から取得)
|
|
||||||
self.openai_api_key = os.getenv("OPENAI_API_KEY")
|
|
||||||
self.anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
|
|
||||||
|
|
||||||
async def generate_ai_summary(self, messages: List[Dict[str, Any]], provider: str = "openai") -> Dict[str, Any]:
|
|
||||||
"""AIを使用して会話の高度な要約と分析を生成"""
|
|
||||||
|
|
||||||
# 会話内容を結合
|
|
||||||
conversation_text = ""
|
|
||||||
for msg in messages[-20:]: # 最新20メッセージを使用
|
|
||||||
role = "User" if msg["role"] == "user" else "Assistant"
|
|
||||||
conversation_text += f"{role}: {msg['content'][:500]}\n"
|
|
||||||
|
|
||||||
# プロンプトを構築
|
|
||||||
analysis_prompt = f"""
|
|
||||||
以下の会話を分析し、JSON形式で以下の情報を抽出してください:
|
|
||||||
|
|
||||||
1. main_topics: 主なトピック(最大5個)
|
|
||||||
2. user_intent: ユーザーの意図や目的
|
|
||||||
3. key_insights: 重要な洞察や学び(最大3個)
|
|
||||||
4. relationship_indicators: 関係性を示す要素
|
|
||||||
5. emotional_tone: 感情的なトーン
|
|
||||||
6. action_items: アクションアイテムや次のステップ
|
|
||||||
7. summary: 100文字以内の要約
|
|
||||||
|
|
||||||
会話内容:
|
|
||||||
{conversation_text}
|
|
||||||
|
|
||||||
回答はJSON形式のみで返してください。
|
|
||||||
"""
|
|
||||||
|
|
||||||
try:
|
|
||||||
if provider == "openai" and self.openai_api_key:
|
|
||||||
return await self._call_openai_api(analysis_prompt)
|
|
||||||
elif provider == "anthropic" and self.anthropic_api_key:
|
|
||||||
return await self._call_anthropic_api(analysis_prompt)
|
|
||||||
else:
|
|
||||||
# フォールバック:基本的な分析
|
|
||||||
return self._generate_basic_analysis(messages)
|
|
||||||
except Exception as e:
|
|
||||||
print(f"AI analysis failed: {e}")
|
|
||||||
return self._generate_basic_analysis(messages)
|
|
||||||
|
|
||||||
async def _call_openai_api(self, prompt: str) -> Dict[str, Any]:
|
|
||||||
"""OpenAI APIを呼び出し"""
|
|
||||||
async with aiohttp.ClientSession() as session:
|
|
||||||
headers = {
|
|
||||||
"Authorization": f"Bearer {self.openai_api_key}",
|
|
||||||
"Content-Type": "application/json"
|
|
||||||
}
|
|
||||||
data = {
|
|
||||||
"model": "gpt-4",
|
|
||||||
"messages": [{"role": "user", "content": prompt}],
|
|
||||||
"temperature": 0.3,
|
|
||||||
"max_tokens": 1000
|
|
||||||
}
|
|
||||||
|
|
||||||
async with session.post("https://api.openai.com/v1/chat/completions",
|
|
||||||
headers=headers, json=data) as response:
|
|
||||||
result = await response.json()
|
|
||||||
content = result["choices"][0]["message"]["content"]
|
|
||||||
return json.loads(content)
|
|
||||||
|
|
||||||
async def _call_anthropic_api(self, prompt: str) -> Dict[str, Any]:
|
|
||||||
"""Anthropic APIを呼び出し"""
|
|
||||||
async with aiohttp.ClientSession() as session:
|
|
||||||
headers = {
|
|
||||||
"x-api-key": self.anthropic_api_key,
|
|
||||||
"Content-Type": "application/json",
|
|
||||||
"anthropic-version": "2023-06-01"
|
|
||||||
}
|
|
||||||
data = {
|
|
||||||
"model": "claude-3-sonnet-20240229",
|
|
||||||
"max_tokens": 1000,
|
|
||||||
"messages": [{"role": "user", "content": prompt}]
|
|
||||||
}
|
|
||||||
|
|
||||||
async with session.post("https://api.anthropic.com/v1/messages",
|
|
||||||
headers=headers, json=data) as response:
|
|
||||||
result = await response.json()
|
|
||||||
content = result["content"][0]["text"]
|
|
||||||
return json.loads(content)
|
|
||||||
|
|
||||||
def _generate_basic_analysis(self, messages: List[Dict[str, Any]]) -> Dict[str, Any]:
|
|
||||||
"""基本的な分析(AI APIが利用できない場合のフォールバック)"""
|
|
||||||
user_messages = [msg for msg in messages if msg["role"] == "user"]
|
|
||||||
assistant_messages = [msg for msg in messages if msg["role"] == "assistant"]
|
|
||||||
|
|
||||||
# キーワード抽出(簡易版)
|
|
||||||
all_text = " ".join([msg["content"] for msg in messages])
|
|
||||||
words = all_text.lower().split()
|
|
||||||
word_freq = {}
|
|
||||||
for word in words:
|
|
||||||
if len(word) > 3:
|
|
||||||
word_freq[word] = word_freq.get(word, 0) + 1
|
|
||||||
|
|
||||||
top_words = sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:5]
|
|
||||||
|
|
||||||
return {
|
|
||||||
"main_topics": [word[0] for word in top_words],
|
|
||||||
"user_intent": "情報収集・問題解決",
|
|
||||||
"key_insights": ["基本的な会話分析"],
|
|
||||||
"relationship_indicators": {
|
|
||||||
"interaction_count": len(messages),
|
|
||||||
"user_engagement": len(user_messages),
|
|
||||||
"assistant_helpfulness": len(assistant_messages)
|
|
||||||
},
|
|
||||||
"emotional_tone": "neutral",
|
|
||||||
"action_items": [],
|
|
||||||
"summary": f"{len(user_messages)}回のやり取りによる会話"
|
|
||||||
}
|
|
||||||
|
|
||||||
class RelationshipTracker:
|
|
||||||
"""関係性追跡クラス"""
|
|
||||||
|
|
||||||
def __init__(self):
|
|
||||||
init_directories()
|
|
||||||
self.relationship_file = RELATIONSHIP_DIR / "relationships.json"
|
|
||||||
self.relationships = self._load_relationships()
|
|
||||||
|
|
||||||
def _load_relationships(self) -> Dict[str, Any]:
|
|
||||||
"""関係性データを読み込み"""
|
|
||||||
if self.relationship_file.exists():
|
|
||||||
with open(self.relationship_file, 'r', encoding='utf-8') as f:
|
|
||||||
return json.load(f)
|
|
||||||
return {"targets": {}, "last_updated": datetime.now().isoformat()}
|
|
||||||
|
|
||||||
def _save_relationships(self):
|
|
||||||
"""関係性データを保存"""
|
|
||||||
self.relationships["last_updated"] = datetime.now().isoformat()
|
|
||||||
with open(self.relationship_file, 'w', encoding='utf-8') as f:
|
|
||||||
json.dump(self.relationships, f, ensure_ascii=False, indent=2)
|
|
||||||
|
|
||||||
def update_relationship(self, target: str, interaction_type: str, weight: float = 1.0, context: str = None):
|
|
||||||
"""関係性を更新"""
|
|
||||||
if target not in self.relationships["targets"]:
|
|
||||||
self.relationships["targets"][target] = {
|
|
||||||
"score": 0.0,
|
|
||||||
"interactions": [],
|
|
||||||
"created_at": datetime.now().isoformat(),
|
|
||||||
"last_interaction": None
|
|
||||||
}
|
|
||||||
|
|
||||||
# スコア計算
|
|
||||||
score_change = 0.0
|
|
||||||
if interaction_type == "positive":
|
|
||||||
score_change = weight * 1.0
|
|
||||||
elif interaction_type == "negative":
|
|
||||||
score_change = weight * -1.0
|
|
||||||
|
|
||||||
# 時間減衰を適用
|
|
||||||
self._apply_time_decay(target)
|
|
||||||
|
|
||||||
# スコア更新
|
|
||||||
current_score = self.relationships["targets"][target]["score"]
|
|
||||||
new_score = current_score + score_change
|
|
||||||
|
|
||||||
# スコアの範囲制限(-100 to 100)
|
|
||||||
new_score = max(-100, min(100, new_score))
|
|
||||||
|
|
||||||
self.relationships["targets"][target]["score"] = new_score
|
|
||||||
self.relationships["targets"][target]["last_interaction"] = datetime.now().isoformat()
|
|
||||||
|
|
||||||
# インタラクション履歴を追加
|
|
||||||
interaction_record = {
|
|
||||||
"type": interaction_type,
|
|
||||||
"weight": weight,
|
|
||||||
"score_change": score_change,
|
|
||||||
"new_score": new_score,
|
|
||||||
"timestamp": datetime.now().isoformat(),
|
|
||||||
"context": context
|
|
||||||
}
|
|
||||||
|
|
||||||
self.relationships["targets"][target]["interactions"].append(interaction_record)
|
|
||||||
|
|
||||||
# 履歴は最新100件まで保持
|
|
||||||
if len(self.relationships["targets"][target]["interactions"]) > 100:
|
|
||||||
self.relationships["targets"][target]["interactions"] = \
|
|
||||||
self.relationships["targets"][target]["interactions"][-100:]
|
|
||||||
|
|
||||||
self._save_relationships()
|
|
||||||
return new_score
|
|
||||||
|
|
||||||
def _apply_time_decay(self, target: str):
|
|
||||||
"""時間減衰を適用"""
|
|
||||||
target_data = self.relationships["targets"][target]
|
|
||||||
last_interaction = target_data.get("last_interaction")
|
|
||||||
|
|
||||||
if last_interaction:
|
|
||||||
last_time = datetime.fromisoformat(last_interaction)
|
|
||||||
now = datetime.now()
|
|
||||||
days_passed = (now - last_time).days
|
|
||||||
|
|
||||||
# 7日ごとに5%減衰
|
|
||||||
if days_passed > 0:
|
|
||||||
decay_factor = 0.95 ** (days_passed / 7)
|
|
||||||
target_data["score"] *= decay_factor
|
|
||||||
|
|
||||||
def get_relationship_score(self, target: str) -> float:
|
|
||||||
"""関係性スコアを取得"""
|
|
||||||
if target in self.relationships["targets"]:
|
|
||||||
self._apply_time_decay(target)
|
|
||||||
return self.relationships["targets"][target]["score"]
|
|
||||||
return 0.0
|
|
||||||
|
|
||||||
def should_send_message(self, target: str, threshold: float = 50.0) -> bool:
|
|
||||||
"""メッセージ送信の可否を判定"""
|
|
||||||
score = self.get_relationship_score(target)
|
|
||||||
return score >= threshold
|
|
||||||
|
|
||||||
def get_all_relationships(self) -> Dict[str, Any]:
|
|
||||||
"""すべての関係性を取得"""
|
|
||||||
# 全ターゲットに時間減衰を適用
|
|
||||||
for target in self.relationships["targets"]:
|
|
||||||
self._apply_time_decay(target)
|
|
||||||
|
|
||||||
return self.relationships
|
|
||||||
|
|
||||||
class MemoryManager:
|
|
||||||
"""記憶管理クラス(AI処理機能付き)"""
|
|
||||||
|
|
||||||
def __init__(self):
|
|
||||||
init_directories()
|
|
||||||
self.ai_processor = AIMemoryProcessor()
|
|
||||||
self.relationship_tracker = RelationshipTracker()
|
|
||||||
|
|
||||||
def parse_chatgpt_conversation(self, conversation_data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
|
||||||
"""ChatGPTの会話データを解析してメッセージを抽出"""
|
|
||||||
messages = []
|
|
||||||
mapping = conversation_data.get("mapping", {})
|
|
||||||
|
|
||||||
# メッセージを時系列順に並べる
|
|
||||||
message_nodes = []
|
|
||||||
for node_id, node in mapping.items():
|
|
||||||
message = node.get("message")
|
|
||||||
if not message:
|
|
||||||
continue
|
|
||||||
content = message.get("content", {})
|
|
||||||
parts = content.get("parts", [])
|
|
||||||
|
|
||||||
if parts and isinstance(parts[0], str) and parts[0].strip():
|
|
||||||
message_nodes.append({
|
|
||||||
"id": node_id,
|
|
||||||
"create_time": message.get("create_time", 0),
|
|
||||||
"author_role": message["author"]["role"],
|
|
||||||
"content": parts[0],
|
|
||||||
"parent": node.get("parent")
|
|
||||||
})
|
|
||||||
|
|
||||||
# 作成時間でソート
|
|
||||||
message_nodes.sort(key=lambda x: x["create_time"] or 0)
|
|
||||||
|
|
||||||
for msg in message_nodes:
|
|
||||||
if msg["author_role"] in ["user", "assistant"]:
|
|
||||||
messages.append({
|
|
||||||
"role": msg["author_role"],
|
|
||||||
"content": msg["content"],
|
|
||||||
"timestamp": msg["create_time"],
|
|
||||||
"message_id": msg["id"]
|
|
||||||
})
|
|
||||||
|
|
||||||
return messages
|
|
||||||
|
|
||||||
async def save_chatgpt_memory(self, conversation_data: Dict[str, Any], process_with_ai: bool = True) -> str:
|
|
||||||
"""ChatGPTの会話を記憶として保存(AI処理オプション付き)"""
|
|
||||||
title = conversation_data.get("title", "untitled")
|
|
||||||
create_time = conversation_data.get("create_time", datetime.now().timestamp())
|
|
||||||
|
|
||||||
# メッセージを解析
|
|
||||||
messages = self.parse_chatgpt_conversation(conversation_data)
|
|
||||||
|
|
||||||
if not messages:
|
|
||||||
raise ValueError("No valid messages found in conversation")
|
|
||||||
|
|
||||||
# AI分析を実行
|
|
||||||
ai_analysis = None
|
|
||||||
if process_with_ai:
|
|
||||||
try:
|
|
||||||
ai_analysis = await self.ai_processor.generate_ai_summary(messages)
|
|
||||||
except Exception as e:
|
|
||||||
print(f"AI analysis failed: {e}")
|
|
||||||
|
|
||||||
# 基本要約を生成
|
|
||||||
basic_summary = self.generate_basic_summary(messages)
|
|
||||||
|
|
||||||
# 保存データを作成
|
|
||||||
memory_data = {
|
|
||||||
"title": title,
|
|
||||||
"source": "chatgpt",
|
|
||||||
"import_time": datetime.now().isoformat(),
|
|
||||||
"original_create_time": create_time,
|
|
||||||
"messages": messages,
|
|
||||||
"basic_summary": basic_summary,
|
|
||||||
"ai_analysis": ai_analysis,
|
|
||||||
"message_count": len(messages),
|
|
||||||
"hash": self._generate_content_hash(messages)
|
|
||||||
}
|
|
||||||
|
|
||||||
# 関係性データを更新
|
|
||||||
if ai_analysis and "relationship_indicators" in ai_analysis:
|
|
||||||
interaction_count = ai_analysis["relationship_indicators"].get("interaction_count", 0)
|
|
||||||
if interaction_count > 10: # 長い会話は関係性にプラス
|
|
||||||
self.relationship_tracker.update_relationship(
|
|
||||||
target="user_general",
|
|
||||||
interaction_type="positive",
|
|
||||||
weight=min(interaction_count / 10, 5.0),
|
|
||||||
context=f"Long conversation: {title}"
|
|
||||||
)
|
|
||||||
|
|
||||||
# ファイル名を生成
|
|
||||||
safe_title = "".join(c for c in title if c.isalnum() or c in (' ', '-', '_')).rstrip()
|
|
||||||
timestamp = datetime.fromtimestamp(create_time).strftime("%Y%m%d_%H%M%S")
|
|
||||||
filename = f"{timestamp}_{safe_title[:50]}.json"
|
|
||||||
|
|
||||||
filepath = CHATGPT_MEMORY_DIR / filename
|
|
||||||
with open(filepath, 'w', encoding='utf-8') as f:
|
|
||||||
json.dump(memory_data, f, ensure_ascii=False, indent=2)
|
|
||||||
|
|
||||||
# 処理済みメモリディレクトリにも保存
|
|
||||||
if ai_analysis:
|
|
||||||
processed_filepath = PROCESSED_MEMORY_DIR / filename
|
|
||||||
with open(processed_filepath, 'w', encoding='utf-8') as f:
|
|
||||||
json.dump(memory_data, f, ensure_ascii=False, indent=2)
|
|
||||||
|
|
||||||
return str(filepath)
|
|
||||||
|
|
||||||
def generate_basic_summary(self, messages: List[Dict[str, Any]]) -> str:
|
|
||||||
"""基本要約を生成"""
|
|
||||||
if not messages:
|
|
||||||
return "Empty conversation"
|
|
||||||
|
|
||||||
user_messages = [msg for msg in messages if msg["role"] == "user"]
|
|
||||||
assistant_messages = [msg for msg in messages if msg["role"] == "assistant"]
|
|
||||||
|
|
||||||
summary = f"Conversation with {len(user_messages)} user messages and {len(assistant_messages)} assistant responses. "
|
|
||||||
|
|
||||||
if user_messages:
|
|
||||||
first_user_msg = user_messages[0]["content"][:100]
|
|
||||||
summary += f"Started with: {first_user_msg}..."
|
|
||||||
|
|
||||||
return summary
|
|
||||||
|
|
||||||
def _generate_content_hash(self, messages: List[Dict[str, Any]]) -> str:
|
|
||||||
"""メッセージ内容のハッシュを生成"""
|
|
||||||
content = "".join([msg["content"] for msg in messages])
|
|
||||||
return hashlib.sha256(content.encode()).hexdigest()[:16]
|
|
||||||
|
|
||||||
def search_memories(self, query: str, limit: int = 10, use_ai_analysis: bool = True) -> List[Dict[str, Any]]:
|
|
||||||
"""記憶を検索(AI分析結果も含む)"""
|
|
||||||
results = []
|
|
||||||
|
|
||||||
# 処理済みメモリから検索
|
|
||||||
search_dirs = [PROCESSED_MEMORY_DIR, CHATGPT_MEMORY_DIR] if use_ai_analysis else [CHATGPT_MEMORY_DIR]
|
|
||||||
|
|
||||||
for search_dir in search_dirs:
|
|
||||||
for filepath in search_dir.glob("*.json"):
|
|
||||||
try:
|
|
||||||
with open(filepath, 'r', encoding='utf-8') as f:
|
|
||||||
memory_data = json.load(f)
|
|
||||||
|
|
||||||
# 検索対象テキストを構築
|
|
||||||
search_text = f"{memory_data.get('title', '')} {memory_data.get('basic_summary', '')}"
|
|
||||||
|
|
||||||
# AI分析結果も検索対象に含める
|
|
||||||
if memory_data.get('ai_analysis'):
|
|
||||||
ai_analysis = memory_data['ai_analysis']
|
|
||||||
search_text += f" {' '.join(ai_analysis.get('main_topics', []))}"
|
|
||||||
search_text += f" {ai_analysis.get('summary', '')}"
|
|
||||||
search_text += f" {' '.join(ai_analysis.get('key_insights', []))}"
|
|
||||||
|
|
||||||
# メッセージ内容も検索対象に含める
|
|
||||||
for msg in memory_data.get('messages', []):
|
|
||||||
search_text += f" {msg.get('content', '')}"
|
|
||||||
|
|
||||||
if query.lower() in search_text.lower():
|
|
||||||
result = {
|
|
||||||
"filepath": str(filepath),
|
|
||||||
"title": memory_data.get("title"),
|
|
||||||
"basic_summary": memory_data.get("basic_summary"),
|
|
||||||
"source": memory_data.get("source"),
|
|
||||||
"import_time": memory_data.get("import_time"),
|
|
||||||
"message_count": len(memory_data.get("messages", [])),
|
|
||||||
"has_ai_analysis": bool(memory_data.get("ai_analysis"))
|
|
||||||
}
|
|
||||||
|
|
||||||
if memory_data.get('ai_analysis'):
|
|
||||||
result["ai_summary"] = memory_data['ai_analysis'].get('summary', '')
|
|
||||||
result["main_topics"] = memory_data['ai_analysis'].get('main_topics', [])
|
|
||||||
|
|
||||||
results.append(result)
|
|
||||||
|
|
||||||
if len(results) >= limit:
|
|
||||||
break
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
print(f"Error reading memory file {filepath}: {e}")
|
|
||||||
continue
|
|
||||||
|
|
||||||
if len(results) >= limit:
|
|
||||||
break
|
|
||||||
|
|
||||||
return results
|
|
||||||
|
|
||||||
def get_memory_detail(self, filepath: str) -> Dict[str, Any]:
|
|
||||||
"""記憶の詳細を取得"""
|
|
||||||
try:
|
|
||||||
with open(filepath, 'r', encoding='utf-8') as f:
|
|
||||||
return json.load(f)
|
|
||||||
except Exception as e:
|
|
||||||
raise ValueError(f"Error reading memory file: {e}")
|
|
||||||
|
|
||||||
def list_all_memories(self) -> List[Dict[str, Any]]:
|
|
||||||
"""すべての記憶をリスト"""
|
|
||||||
memories = []
|
|
||||||
|
|
||||||
for filepath in CHATGPT_MEMORY_DIR.glob("*.json"):
|
|
||||||
try:
|
|
||||||
with open(filepath, 'r', encoding='utf-8') as f:
|
|
||||||
memory_data = json.load(f)
|
|
||||||
|
|
||||||
memory_info = {
|
|
||||||
"filepath": str(filepath),
|
|
||||||
"title": memory_data.get("title"),
|
|
||||||
"basic_summary": memory_data.get("basic_summary"),
|
|
||||||
"source": memory_data.get("source"),
|
|
||||||
"import_time": memory_data.get("import_time"),
|
|
||||||
"message_count": len(memory_data.get("messages", [])),
|
|
||||||
"has_ai_analysis": bool(memory_data.get("ai_analysis"))
|
|
||||||
}
|
|
||||||
|
|
||||||
if memory_data.get('ai_analysis'):
|
|
||||||
memory_info["ai_summary"] = memory_data['ai_analysis'].get('summary', '')
|
|
||||||
memory_info["main_topics"] = memory_data['ai_analysis'].get('main_topics', [])
|
|
||||||
|
|
||||||
memories.append(memory_info)
|
|
||||||
except Exception as e:
|
|
||||||
print(f"Error reading memory file {filepath}: {e}")
|
|
||||||
continue
|
|
||||||
|
|
||||||
# インポート時間でソート
|
|
||||||
memories.sort(key=lambda x: x.get("import_time", ""), reverse=True)
|
|
||||||
return memories
|
|
||||||
|
|
||||||
# FastAPI アプリケーション
|
|
||||||
app = FastAPI(title="AigptMCP Server with AI Memory", version="2.0.0")
|
|
||||||
memory_manager = MemoryManager()
|
|
||||||
|
|
||||||
@app.post("/memory/import/chatgpt")
|
|
||||||
async def import_chatgpt_conversation(data: ConversationImport, process_with_ai: bool = True):
|
|
||||||
"""ChatGPTの会話をインポート(AI処理オプション付き)"""
|
|
||||||
try:
|
|
||||||
filepath = await memory_manager.save_chatgpt_memory(data.conversation_data, process_with_ai)
|
|
||||||
return {
|
|
||||||
"success": True,
|
|
||||||
"message": "Conversation imported successfully",
|
|
||||||
"filepath": filepath,
|
|
||||||
"ai_processed": process_with_ai
|
|
||||||
}
|
|
||||||
except Exception as e:
|
|
||||||
raise HTTPException(status_code=400, detail=str(e))
|
|
||||||
|
|
||||||
@app.post("/memory/process-ai")
|
|
||||||
async def process_memory_with_ai(data: MemorySummaryRequest):
|
|
||||||
"""既存の記憶をAIで再処理"""
|
|
||||||
try:
|
|
||||||
# 既存記憶を読み込み
|
|
||||||
memory_data = memory_manager.get_memory_detail(data.filepath)
|
|
||||||
|
|
||||||
# AI分析を実行
|
|
||||||
ai_analysis = await memory_manager.ai_processor.generate_ai_summary(
|
|
||||||
memory_data["messages"],
|
|
||||||
data.ai_provider
|
|
||||||
)
|
|
||||||
|
|
||||||
# データを更新
|
|
||||||
memory_data["ai_analysis"] = ai_analysis
|
|
||||||
memory_data["ai_processed_at"] = datetime.now().isoformat()
|
|
||||||
|
|
||||||
# ファイルを更新
|
|
||||||
with open(data.filepath, 'w', encoding='utf-8') as f:
|
|
||||||
json.dump(memory_data, f, ensure_ascii=False, indent=2)
|
|
||||||
|
|
||||||
# 処理済みディレクトリにもコピー
|
|
||||||
processed_filepath = PROCESSED_MEMORY_DIR / Path(data.filepath).name
|
|
||||||
with open(processed_filepath, 'w', encoding='utf-8') as f:
|
|
||||||
json.dump(memory_data, f, ensure_ascii=False, indent=2)
|
|
||||||
|
|
||||||
return {
|
|
||||||
"success": True,
|
|
||||||
"message": "Memory processed with AI successfully",
|
|
||||||
"ai_analysis": ai_analysis
|
|
||||||
}
|
|
||||||
except Exception as e:
|
|
||||||
raise HTTPException(status_code=500, detail=str(e))
|
|
||||||
|
|
||||||
@app.post("/memory/search")
|
|
||||||
async def search_memories(query: MemoryQuery):
|
|
||||||
"""記憶を検索"""
|
|
||||||
try:
|
|
||||||
results = memory_manager.search_memories(query.query, query.limit)
|
|
||||||
return {
|
|
||||||
"success": True,
|
|
||||||
"results": results,
|
|
||||||
"count": len(results)
|
|
||||||
}
|
|
||||||
except Exception as e:
|
|
||||||
raise HTTPException(status_code=500, detail=str(e))
|
|
||||||
|
|
||||||
@app.get("/memory/list")
|
|
||||||
async def list_memories():
|
|
||||||
"""すべての記憶をリスト"""
|
|
||||||
try:
|
|
||||||
memories = memory_manager.list_all_memories()
|
|
||||||
return {
|
|
||||||
"success": True,
|
|
||||||
"memories": memories,
|
|
||||||
"count": len(memories)
|
|
||||||
}
|
|
||||||
except Exception as e:
|
|
||||||
raise HTTPException(status_code=500, detail=str(e))
|
|
||||||
|
|
||||||
@app.get("/memory/detail")
|
|
||||||
async def get_memory_detail(filepath: str):
|
|
||||||
"""記憶の詳細を取得"""
|
|
||||||
try:
|
|
||||||
detail = memory_manager.get_memory_detail(filepath)
|
|
||||||
return {
|
|
||||||
"success": True,
|
|
||||||
"memory": detail
|
|
||||||
}
|
|
||||||
except Exception as e:
|
|
||||||
raise HTTPException(status_code=404, detail=str(e))
|
|
||||||
|
|
||||||
@app.post("/relationship/update")
|
|
||||||
async def update_relationship(data: RelationshipUpdate):
|
|
||||||
"""関係性を更新"""
|
|
||||||
try:
|
|
||||||
new_score = memory_manager.relationship_tracker.update_relationship(
|
|
||||||
data.target, data.interaction_type, data.weight, data.context
|
|
||||||
)
|
|
||||||
return {
|
|
||||||
"success": True,
|
|
||||||
"new_score": new_score,
|
|
||||||
"can_send_message": memory_manager.relationship_tracker.should_send_message(data.target)
|
|
||||||
}
|
|
||||||
except Exception as e:
|
|
||||||
raise HTTPException(status_code=500, detail=str(e))
|
|
||||||
|
|
||||||
@app.get("/relationship/list")
|
|
||||||
async def list_relationships():
|
|
||||||
"""すべての関係性をリスト"""
|
|
||||||
try:
|
|
||||||
relationships = memory_manager.relationship_tracker.get_all_relationships()
|
|
||||||
return {
|
|
||||||
"success": True,
|
|
||||||
"relationships": relationships
|
|
||||||
}
|
|
||||||
except Exception as e:
|
|
||||||
raise HTTPException(status_code=500, detail=str(e))
|
|
||||||
|
|
||||||
@app.get("/relationship/check")
|
|
||||||
async def check_send_permission(target: str, threshold: float = 50.0):
|
|
||||||
"""メッセージ送信可否をチェック"""
|
|
||||||
try:
|
|
||||||
score = memory_manager.relationship_tracker.get_relationship_score(target)
|
|
||||||
can_send = memory_manager.relationship_tracker.should_send_message(target, threshold)
|
|
||||||
return {
|
|
||||||
"success": True,
|
|
||||||
"target": target,
|
|
||||||
"score": score,
|
|
||||||
"can_send_message": can_send,
|
|
||||||
"threshold": threshold
|
|
||||||
}
|
|
||||||
except Exception as e:
|
|
||||||
raise HTTPException(status_code=500, detail=str(e))
|
|
||||||
|
|
||||||
@app.post("/chat")
|
|
||||||
async def chat_endpoint(data: ChatMessage):
|
|
||||||
"""チャット機能(記憶と関係性を活用)"""
|
|
||||||
try:
|
|
||||||
# 関連する記憶を検索
|
|
||||||
memories = memory_manager.search_memories(data.message, limit=3)
|
|
||||||
|
|
||||||
# メモリのコンテキストを構築
|
|
||||||
memory_context = ""
|
|
||||||
if memories:
|
|
||||||
memory_context = "\n# Related memories:\n"
|
|
||||||
for memory in memories:
|
|
||||||
memory_context += f"- {memory['title']}: {memory.get('ai_summary', memory.get('basic_summary', ''))}\n"
|
|
||||||
if memory.get('main_topics'):
|
|
||||||
memory_context += f" Topics: {', '.join(memory['main_topics'])}\n"
|
|
||||||
|
|
||||||
# 関係性情報を取得
|
|
||||||
relationships = memory_manager.relationship_tracker.get_all_relationships()
|
|
||||||
|
|
||||||
# 実際のチャット処理
|
|
||||||
enhanced_message = data.message
|
|
||||||
if memory_context:
|
|
||||||
enhanced_message = f"{data.message}\n\n{memory_context}"
|
|
||||||
|
|
||||||
return {
|
|
||||||
"success": True,
|
|
||||||
"response": f"Enhanced response with memory context: {enhanced_message}",
|
|
||||||
"memories_used": len(memories),
|
|
||||||
"relationship_info": {
|
|
||||||
"active_relationships": len(relationships.get("targets", {})),
|
|
||||||
"can_initiate_conversations": sum(1 for target, data in relationships.get("targets", {}).items()
|
|
||||||
if memory_manager.relationship_tracker.should_send_message(target))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
except Exception as e:
|
|
||||||
raise HTTPException(status_code=500, detail=str(e))
|
|
||||||
|
|
||||||
@app.get("/")
|
|
||||||
async def root():
|
|
||||||
"""ヘルスチェック"""
|
|
||||||
return {
|
|
||||||
"service": "AigptMCP Server with AI Memory",
|
|
||||||
"version": "2.0.0",
|
|
||||||
"status": "running",
|
|
||||||
"memory_dir": str(MEMORY_DIR),
|
|
||||||
"features": [
|
|
||||||
"AI-powered memory analysis",
|
|
||||||
"Relationship tracking",
|
|
||||||
"Advanced memory search",
|
|
||||||
"Conversation import",
|
|
||||||
"Auto-summary generation"
|
|
||||||
],
|
|
||||||
"endpoints": [
|
|
||||||
"/memory/import/chatgpt",
|
|
||||||
"/memory/process-ai",
|
|
||||||
"/memory/search",
|
|
||||||
"/memory/list",
|
|
||||||
"/memory/detail",
|
|
||||||
"/relationship/update",
|
|
||||||
"/relationship/list",
|
|
||||||
"/relationship/check",
|
|
||||||
"/chat"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
print("🚀 AigptMCP Server with AI Memory starting...")
|
|
||||||
print(f"📁 Memory directory: {MEMORY_DIR}")
|
|
||||||
print(f"🧠 AI Memory processing: {'✅ Enabled' if os.getenv('OPENAI_API_KEY') or os.getenv('ANTHROPIC_API_KEY') else '❌ Disabled (no API keys)'}")
|
|
||||||
uvicorn.run(app, host="127.0.0.1", port=5000)
|
|
@ -1,64 +0,0 @@
|
|||||||
// src/cli.rs
|
|
||||||
use clap::{Parser, Subcommand};
|
|
||||||
|
|
||||||
#[derive(Parser)]
|
|
||||||
#[command(name = "aigpt")]
|
|
||||||
#[command(about = "AI GPT CLI with MCP Server and Memory")]
|
|
||||||
pub struct Args {
|
|
||||||
#[command(subcommand)]
|
|
||||||
pub command: Commands,
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Subcommand)]
|
|
||||||
pub enum Commands {
|
|
||||||
/// MCP Server management
|
|
||||||
Server {
|
|
||||||
#[command(subcommand)]
|
|
||||||
command: ServerCommands,
|
|
||||||
},
|
|
||||||
/// Chat with AI
|
|
||||||
Chat {
|
|
||||||
/// Message to send
|
|
||||||
message: String,
|
|
||||||
/// Use memory context
|
|
||||||
#[arg(long)]
|
|
||||||
with_memory: bool,
|
|
||||||
},
|
|
||||||
/// Memory management
|
|
||||||
Memory {
|
|
||||||
#[command(subcommand)]
|
|
||||||
command: MemoryCommands,
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Subcommand)]
|
|
||||||
pub enum ServerCommands {
|
|
||||||
/// Setup Python MCP server environment
|
|
||||||
Setup,
|
|
||||||
/// Run the MCP server
|
|
||||||
Run,
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Subcommand)]
|
|
||||||
pub enum MemoryCommands {
|
|
||||||
/// Import ChatGPT conversation export file
|
|
||||||
Import {
|
|
||||||
/// Path to ChatGPT export JSON file
|
|
||||||
file: String,
|
|
||||||
},
|
|
||||||
/// Search memories
|
|
||||||
Search {
|
|
||||||
/// Search query
|
|
||||||
query: String,
|
|
||||||
/// Maximum number of results
|
|
||||||
#[arg(short, long, default_value = "10")]
|
|
||||||
limit: usize,
|
|
||||||
},
|
|
||||||
/// List all memories
|
|
||||||
List,
|
|
||||||
/// Show memory details
|
|
||||||
Detail {
|
|
||||||
/// Path to memory file
|
|
||||||
filepath: String,
|
|
||||||
},
|
|
||||||
}
|
|
@ -1,59 +0,0 @@
|
|||||||
// src/config.rs
|
|
||||||
use std::fs;
|
|
||||||
use std::path::{Path, PathBuf};
|
|
||||||
use shellexpand;
|
|
||||||
|
|
||||||
pub struct ConfigPaths {
|
|
||||||
pub base_dir: PathBuf,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl ConfigPaths {
|
|
||||||
pub fn new() -> Self {
|
|
||||||
let app_name = env!("CARGO_PKG_NAME");
|
|
||||||
let mut base_dir = shellexpand::tilde("~").to_string();
|
|
||||||
base_dir.push_str(&format!("/.config/{}/", app_name));
|
|
||||||
let base_path = Path::new(&base_dir);
|
|
||||||
if !base_path.exists() {
|
|
||||||
let _ = fs::create_dir_all(base_path);
|
|
||||||
}
|
|
||||||
|
|
||||||
ConfigPaths {
|
|
||||||
base_dir: base_path.to_path_buf(),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[allow(dead_code)]
|
|
||||||
pub fn data_file(&self, file_name: &str) -> PathBuf {
|
|
||||||
let file_path = match file_name {
|
|
||||||
"db" => self.base_dir.join("user.db"),
|
|
||||||
"toml" => self.base_dir.join("user.toml"),
|
|
||||||
"json" => self.base_dir.join("user.json"),
|
|
||||||
_ => self.base_dir.join(format!(".{}", file_name)),
|
|
||||||
};
|
|
||||||
file_path
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn mcp_dir(&self) -> PathBuf {
|
|
||||||
self.base_dir.join("mcp")
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn venv_path(&self) -> PathBuf {
|
|
||||||
self.mcp_dir().join(".venv")
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn python_executable(&self) -> PathBuf {
|
|
||||||
if cfg!(windows) {
|
|
||||||
self.venv_path().join("Scripts").join("python.exe")
|
|
||||||
} else {
|
|
||||||
self.venv_path().join("bin").join("python")
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn pip_executable(&self) -> PathBuf {
|
|
||||||
if cfg!(windows) {
|
|
||||||
self.venv_path().join("Scripts").join("pip.exe")
|
|
||||||
} else {
|
|
||||||
self.venv_path().join("bin").join("pip")
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,58 +0,0 @@
|
|||||||
// main.rs
|
|
||||||
mod cli;
|
|
||||||
mod config;
|
|
||||||
mod mcp;
|
|
||||||
|
|
||||||
use cli::{Args, Commands, ServerCommands, MemoryCommands};
|
|
||||||
use clap::Parser;
|
|
||||||
|
|
||||||
#[tokio::main]
|
|
||||||
async fn main() {
|
|
||||||
let args = Args::parse();
|
|
||||||
|
|
||||||
match args.command {
|
|
||||||
Commands::Server { command } => {
|
|
||||||
match command {
|
|
||||||
ServerCommands::Setup => {
|
|
||||||
mcp::server::setup();
|
|
||||||
}
|
|
||||||
ServerCommands::Run => {
|
|
||||||
mcp::server::run().await;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Commands::Chat { message, with_memory } => {
|
|
||||||
if with_memory {
|
|
||||||
if let Err(e) = mcp::memory::handle_chat_with_memory(&message).await {
|
|
||||||
eprintln!("❌ 記憶チャットエラー: {}", e);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
mcp::server::chat(&message).await;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Commands::Memory { command } => {
|
|
||||||
match command {
|
|
||||||
MemoryCommands::Import { file } => {
|
|
||||||
if let Err(e) = mcp::memory::handle_import(&file).await {
|
|
||||||
eprintln!("❌ インポートエラー: {}", e);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
MemoryCommands::Search { query, limit } => {
|
|
||||||
if let Err(e) = mcp::memory::handle_search(&query, limit).await {
|
|
||||||
eprintln!("❌ 検索エラー: {}", e);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
MemoryCommands::List => {
|
|
||||||
if let Err(e) = mcp::memory::handle_list().await {
|
|
||||||
eprintln!("❌ 一覧取得エラー: {}", e);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
MemoryCommands::Detail { filepath } => {
|
|
||||||
if let Err(e) = mcp::memory::handle_detail(&filepath).await {
|
|
||||||
eprintln!("❌ 詳細取得エラー: {}", e);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,393 +0,0 @@
|
|||||||
// src/mcp/memory.rs
|
|
||||||
use reqwest;
|
|
||||||
use serde::{Deserialize, Serialize};
|
|
||||||
use serde_json::{self, Value};
|
|
||||||
use std::fs;
|
|
||||||
use std::path::Path;
|
|
||||||
|
|
||||||
#[derive(Debug, Serialize, Deserialize)]
|
|
||||||
pub struct MemorySearchRequest {
|
|
||||||
pub query: String,
|
|
||||||
pub limit: usize,
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, Serialize, Deserialize)]
|
|
||||||
pub struct ChatRequest {
|
|
||||||
pub message: String,
|
|
||||||
pub model: Option<String>,
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, Serialize, Deserialize)]
|
|
||||||
pub struct ConversationImportRequest {
|
|
||||||
pub conversation_data: Value,
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, Deserialize)]
|
|
||||||
pub struct ApiResponse {
|
|
||||||
pub success: bool,
|
|
||||||
pub error: Option<String>,
|
|
||||||
#[allow(dead_code)]
|
|
||||||
pub message: Option<String>,
|
|
||||||
pub filepath: Option<String>,
|
|
||||||
pub results: Option<Vec<MemoryResult>>,
|
|
||||||
pub memories: Option<Vec<MemoryResult>>,
|
|
||||||
#[allow(dead_code)]
|
|
||||||
pub count: Option<usize>,
|
|
||||||
pub memory: Option<Value>,
|
|
||||||
pub response: Option<String>,
|
|
||||||
pub memories_used: Option<usize>,
|
|
||||||
pub imported_count: Option<usize>,
|
|
||||||
pub total_count: Option<usize>,
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, Deserialize)]
|
|
||||||
pub struct MemoryResult {
|
|
||||||
#[allow(dead_code)]
|
|
||||||
pub filepath: String,
|
|
||||||
pub title: Option<String>,
|
|
||||||
pub summary: Option<String>,
|
|
||||||
pub source: Option<String>,
|
|
||||||
pub import_time: Option<String>,
|
|
||||||
pub message_count: Option<usize>,
|
|
||||||
}
|
|
||||||
|
|
||||||
pub struct MemoryClient {
|
|
||||||
base_url: String,
|
|
||||||
client: reqwest::Client,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl MemoryClient {
|
|
||||||
pub fn new(base_url: Option<String>) -> Self {
|
|
||||||
let url = base_url.unwrap_or_else(|| "http://127.0.0.1:5000".to_string());
|
|
||||||
Self {
|
|
||||||
base_url: url,
|
|
||||||
client: reqwest::Client::new(),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub async fn import_chatgpt_file(&self, filepath: &str) -> Result<ApiResponse, Box<dyn std::error::Error>> {
|
|
||||||
// ファイルを読み込み
|
|
||||||
let content = fs::read_to_string(filepath)?;
|
|
||||||
let json_data: Value = serde_json::from_str(&content)?;
|
|
||||||
|
|
||||||
// 配列かどうかチェック
|
|
||||||
match json_data.as_array() {
|
|
||||||
Some(conversations) => {
|
|
||||||
// 複数の会話をインポート
|
|
||||||
let mut imported_count = 0;
|
|
||||||
let total_count = conversations.len();
|
|
||||||
|
|
||||||
for conversation in conversations {
|
|
||||||
match self.import_single_conversation(conversation.clone()).await {
|
|
||||||
Ok(response) => {
|
|
||||||
if response.success {
|
|
||||||
imported_count += 1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Err(e) => {
|
|
||||||
eprintln!("❌ インポートエラー: {}", e);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
Ok(ApiResponse {
|
|
||||||
success: true,
|
|
||||||
imported_count: Some(imported_count),
|
|
||||||
total_count: Some(total_count),
|
|
||||||
error: None,
|
|
||||||
message: Some(format!("{}個中{}個の会話をインポートしました", total_count, imported_count)),
|
|
||||||
filepath: None,
|
|
||||||
results: None,
|
|
||||||
memories: None,
|
|
||||||
count: None,
|
|
||||||
memory: None,
|
|
||||||
response: None,
|
|
||||||
memories_used: None,
|
|
||||||
})
|
|
||||||
}
|
|
||||||
None => {
|
|
||||||
// 単一の会話をインポート
|
|
||||||
self.import_single_conversation(json_data).await
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
async fn import_single_conversation(&self, conversation_data: Value) -> Result<ApiResponse, Box<dyn std::error::Error>> {
|
|
||||||
let request = ConversationImportRequest { conversation_data };
|
|
||||||
|
|
||||||
let response = self.client
|
|
||||||
.post(&format!("{}/memory/import/chatgpt", self.base_url))
|
|
||||||
.json(&request)
|
|
||||||
.send()
|
|
||||||
.await?;
|
|
||||||
|
|
||||||
let result: ApiResponse = response.json().await?;
|
|
||||||
Ok(result)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub async fn search_memories(&self, query: &str, limit: usize) -> Result<ApiResponse, Box<dyn std::error::Error>> {
|
|
||||||
let request = MemorySearchRequest {
|
|
||||||
query: query.to_string(),
|
|
||||||
limit,
|
|
||||||
};
|
|
||||||
|
|
||||||
let response = self.client
|
|
||||||
.post(&format!("{}/memory/search", self.base_url))
|
|
||||||
.json(&request)
|
|
||||||
.send()
|
|
||||||
.await?;
|
|
||||||
|
|
||||||
let result: ApiResponse = response.json().await?;
|
|
||||||
Ok(result)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub async fn list_memories(&self) -> Result<ApiResponse, Box<dyn std::error::Error>> {
|
|
||||||
let response = self.client
|
|
||||||
.get(&format!("{}/memory/list", self.base_url))
|
|
||||||
.send()
|
|
||||||
.await?;
|
|
||||||
|
|
||||||
let result: ApiResponse = response.json().await?;
|
|
||||||
Ok(result)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub async fn get_memory_detail(&self, filepath: &str) -> Result<ApiResponse, Box<dyn std::error::Error>> {
|
|
||||||
let response = self.client
|
|
||||||
.get(&format!("{}/memory/detail", self.base_url))
|
|
||||||
.query(&[("filepath", filepath)])
|
|
||||||
.send()
|
|
||||||
.await?;
|
|
||||||
|
|
||||||
let result: ApiResponse = response.json().await?;
|
|
||||||
Ok(result)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub async fn chat_with_memory(&self, message: &str) -> Result<ApiResponse, Box<dyn std::error::Error>> {
|
|
||||||
let request = ChatRequest {
|
|
||||||
message: message.to_string(),
|
|
||||||
model: None,
|
|
||||||
};
|
|
||||||
|
|
||||||
let response = self.client
|
|
||||||
.post(&format!("{}/chat", self.base_url))
|
|
||||||
.json(&request)
|
|
||||||
.send()
|
|
||||||
.await?;
|
|
||||||
|
|
||||||
let result: ApiResponse = response.json().await?;
|
|
||||||
Ok(result)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub async fn is_server_running(&self) -> bool {
|
|
||||||
match self.client.get(&self.base_url).send().await {
|
|
||||||
Ok(response) => response.status().is_success(),
|
|
||||||
Err(_) => false,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub async fn handle_import(filepath: &str) -> Result<(), Box<dyn std::error::Error>> {
|
|
||||||
if !Path::new(filepath).exists() {
|
|
||||||
eprintln!("❌ ファイルが見つかりません: {}", filepath);
|
|
||||||
return Ok(());
|
|
||||||
}
|
|
||||||
|
|
||||||
let client = MemoryClient::new(None);
|
|
||||||
|
|
||||||
// サーバーが起動しているかチェック
|
|
||||||
if !client.is_server_running().await {
|
|
||||||
eprintln!("❌ MCP Serverが起動していません。先に 'aigpt server run' を実行してください。");
|
|
||||||
return Ok(());
|
|
||||||
}
|
|
||||||
|
|
||||||
println!("🔄 ChatGPT会話をインポートしています: {}", filepath);
|
|
||||||
|
|
||||||
match client.import_chatgpt_file(filepath).await {
|
|
||||||
Ok(response) => {
|
|
||||||
if response.success {
|
|
||||||
if let (Some(imported), Some(total)) = (response.imported_count, response.total_count) {
|
|
||||||
println!("✅ {}個中{}個の会話をインポートしました", total, imported);
|
|
||||||
} else {
|
|
||||||
println!("✅ 会話をインポートしました");
|
|
||||||
if let Some(path) = response.filepath {
|
|
||||||
println!("📁 保存先: {}", path);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
eprintln!("❌ インポートに失敗: {:?}", response.error);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Err(e) => {
|
|
||||||
eprintln!("❌ インポートエラー: {}", e);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
pub async fn handle_search(query: &str, limit: usize) -> Result<(), Box<dyn std::error::Error>> {
|
|
||||||
let client = MemoryClient::new(None);
|
|
||||||
|
|
||||||
if !client.is_server_running().await {
|
|
||||||
eprintln!("❌ MCP Serverが起動していません。先に 'aigpt server run' を実行してください。");
|
|
||||||
return Ok(());
|
|
||||||
}
|
|
||||||
|
|
||||||
println!("🔍 記憶を検索しています: {}", query);
|
|
||||||
|
|
||||||
match client.search_memories(query, limit).await {
|
|
||||||
Ok(response) => {
|
|
||||||
if response.success {
|
|
||||||
if let Some(results) = response.results {
|
|
||||||
println!("📚 {}個の記憶が見つかりました:", results.len());
|
|
||||||
for memory in results {
|
|
||||||
println!(" • {}", memory.title.unwrap_or_else(|| "タイトルなし".to_string()));
|
|
||||||
if let Some(summary) = memory.summary {
|
|
||||||
println!(" 概要: {}", summary);
|
|
||||||
}
|
|
||||||
if let Some(count) = memory.message_count {
|
|
||||||
println!(" メッセージ数: {}", count);
|
|
||||||
}
|
|
||||||
println!();
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
println!("📚 記憶が見つかりませんでした");
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
eprintln!("❌ 検索に失敗: {:?}", response.error);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Err(e) => {
|
|
||||||
eprintln!("❌ 検索エラー: {}", e);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
pub async fn handle_list() -> Result<(), Box<dyn std::error::Error>> {
|
|
||||||
let client = MemoryClient::new(None);
|
|
||||||
|
|
||||||
if !client.is_server_running().await {
|
|
||||||
eprintln!("❌ MCP Serverが起動していません。先に 'aigpt server run' を実行してください。");
|
|
||||||
return Ok(());
|
|
||||||
}
|
|
||||||
|
|
||||||
println!("📋 記憶一覧を取得しています...");
|
|
||||||
|
|
||||||
match client.list_memories().await {
|
|
||||||
Ok(response) => {
|
|
||||||
if response.success {
|
|
||||||
if let Some(memories) = response.memories {
|
|
||||||
println!("📚 総記憶数: {}", memories.len());
|
|
||||||
for memory in memories {
|
|
||||||
println!(" • {}", memory.title.unwrap_or_else(|| "タイトルなし".to_string()));
|
|
||||||
if let Some(source) = memory.source {
|
|
||||||
println!(" ソース: {}", source);
|
|
||||||
}
|
|
||||||
if let Some(count) = memory.message_count {
|
|
||||||
println!(" メッセージ数: {}", count);
|
|
||||||
}
|
|
||||||
if let Some(import_time) = memory.import_time {
|
|
||||||
println!(" インポート時刻: {}", import_time);
|
|
||||||
}
|
|
||||||
println!();
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
println!("📚 記憶がありません");
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
eprintln!("❌ 一覧取得に失敗: {:?}", response.error);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Err(e) => {
|
|
||||||
eprintln!("❌ 一覧取得エラー: {}", e);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
pub async fn handle_detail(filepath: &str) -> Result<(), Box<dyn std::error::Error>> {
|
|
||||||
let client = MemoryClient::new(None);
|
|
||||||
|
|
||||||
if !client.is_server_running().await {
|
|
||||||
eprintln!("❌ MCP Serverが起動していません。先に 'aigpt server run' を実行してください。");
|
|
||||||
return Ok(());
|
|
||||||
}
|
|
||||||
|
|
||||||
println!("📄 記憶の詳細を取得しています: {}", filepath);
|
|
||||||
|
|
||||||
match client.get_memory_detail(filepath).await {
|
|
||||||
Ok(response) => {
|
|
||||||
if response.success {
|
|
||||||
if let Some(memory) = response.memory {
|
|
||||||
if let Some(title) = memory.get("title").and_then(|v| v.as_str()) {
|
|
||||||
println!("タイトル: {}", title);
|
|
||||||
}
|
|
||||||
if let Some(source) = memory.get("source").and_then(|v| v.as_str()) {
|
|
||||||
println!("ソース: {}", source);
|
|
||||||
}
|
|
||||||
if let Some(summary) = memory.get("summary").and_then(|v| v.as_str()) {
|
|
||||||
println!("概要: {}", summary);
|
|
||||||
}
|
|
||||||
if let Some(messages) = memory.get("messages").and_then(|v| v.as_array()) {
|
|
||||||
println!("メッセージ数: {}", messages.len());
|
|
||||||
println!("\n最近のメッセージ:");
|
|
||||||
for msg in messages.iter().take(5) {
|
|
||||||
if let (Some(role), Some(content)) = (
|
|
||||||
msg.get("role").and_then(|v| v.as_str()),
|
|
||||||
msg.get("content").and_then(|v| v.as_str())
|
|
||||||
) {
|
|
||||||
let content_preview = if content.len() > 100 {
|
|
||||||
format!("{}...", &content[..100])
|
|
||||||
} else {
|
|
||||||
content.to_string()
|
|
||||||
};
|
|
||||||
println!(" {}: {}", role, content_preview);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
eprintln!("❌ 詳細取得に失敗: {:?}", response.error);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Err(e) => {
|
|
||||||
eprintln!("❌ 詳細取得エラー: {}", e);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
pub async fn handle_chat_with_memory(message: &str) -> Result<(), Box<dyn std::error::Error>> {
|
|
||||||
let client = MemoryClient::new(None);
|
|
||||||
|
|
||||||
if !client.is_server_running().await {
|
|
||||||
eprintln!("❌ MCP Serverが起動していません。先に 'aigpt server run' を実行してください。");
|
|
||||||
return Ok(());
|
|
||||||
}
|
|
||||||
|
|
||||||
println!("💬 記憶を活用してチャットしています...");
|
|
||||||
|
|
||||||
match client.chat_with_memory(message).await {
|
|
||||||
Ok(response) => {
|
|
||||||
if response.success {
|
|
||||||
if let Some(reply) = response.response {
|
|
||||||
println!("🤖 {}", reply);
|
|
||||||
}
|
|
||||||
if let Some(memories_used) = response.memories_used {
|
|
||||||
println!("📚 使用した記憶数: {}", memories_used);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
eprintln!("❌ チャットに失敗: {:?}", response.error);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Err(e) => {
|
|
||||||
eprintln!("❌ チャットエラー: {}", e);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
}
|
|
@ -1,3 +0,0 @@
|
|||||||
// src/mcp/mod.rs
|
|
||||||
pub mod server;
|
|
||||||
pub mod memory;
|
|
@ -1,147 +0,0 @@
|
|||||||
// src/mcp/server.rs
|
|
||||||
use crate::config::ConfigPaths;
|
|
||||||
//use std::fs;
|
|
||||||
use std::process::Command as OtherCommand;
|
|
||||||
use std::env;
|
|
||||||
use fs_extra::dir::{copy, CopyOptions};
|
|
||||||
|
|
||||||
pub fn setup() {
|
|
||||||
println!("🔧 MCP Server環境をセットアップしています...");
|
|
||||||
let config = ConfigPaths::new();
|
|
||||||
let mcp_dir = config.mcp_dir();
|
|
||||||
|
|
||||||
// プロジェクトのmcp/ディレクトリからファイルをコピー
|
|
||||||
let current_dir = env::current_dir().expect("現在のディレクトリを取得できません");
|
|
||||||
let project_mcp_dir = current_dir.join("mcp");
|
|
||||||
if !project_mcp_dir.exists() {
|
|
||||||
eprintln!("❌ プロジェクトのmcp/ディレクトリが見つかりません: {}", project_mcp_dir.display());
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if mcp_dir.exists() {
|
|
||||||
fs_extra::dir::remove(&mcp_dir).expect("既存のmcp_dirの削除に失敗しました");
|
|
||||||
}
|
|
||||||
|
|
||||||
let mut options = CopyOptions::new();
|
|
||||||
options.overwrite = true; // 上書き
|
|
||||||
options.copy_inside = true; // 中身だけコピー
|
|
||||||
|
|
||||||
copy(&project_mcp_dir, &mcp_dir, &options).expect("コピーに失敗しました");
|
|
||||||
|
|
||||||
// 仮想環境の作成
|
|
||||||
let venv_path = config.venv_path();
|
|
||||||
if !venv_path.exists() {
|
|
||||||
println!("🐍 仮想環境を作成しています...");
|
|
||||||
let output = OtherCommand::new("python3")
|
|
||||||
.args(&["-m", "venv", ".venv"])
|
|
||||||
.current_dir(&mcp_dir)
|
|
||||||
.output()
|
|
||||||
.expect("venvの作成に失敗しました");
|
|
||||||
|
|
||||||
if !output.status.success() {
|
|
||||||
eprintln!("❌ venv作成エラー: {}", String::from_utf8_lossy(&output.stderr));
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
println!("✅ 仮想環境を作成しました");
|
|
||||||
} else {
|
|
||||||
println!("✅ 仮想環境は既に存在します");
|
|
||||||
}
|
|
||||||
|
|
||||||
// 依存関係のインストール
|
|
||||||
println!("📦 依存関係をインストールしています...");
|
|
||||||
let pip_path = config.pip_executable();
|
|
||||||
let output = OtherCommand::new(&pip_path)
|
|
||||||
.args(&["install", "-r", "requirements.txt"])
|
|
||||||
.current_dir(&mcp_dir)
|
|
||||||
.output()
|
|
||||||
.expect("pipコマンドの実行に失敗しました");
|
|
||||||
|
|
||||||
if !output.status.success() {
|
|
||||||
eprintln!("❌ pip installエラー: {}", String::from_utf8_lossy(&output.stderr));
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
println!("✅ MCP Server環境のセットアップが完了しました!");
|
|
||||||
println!("📍 セットアップ場所: {}", mcp_dir.display());
|
|
||||||
}
|
|
||||||
|
|
||||||
pub async fn run() {
|
|
||||||
println!("🚀 MCP Serverを起動しています...");
|
|
||||||
|
|
||||||
let config = ConfigPaths::new();
|
|
||||||
let mcp_dir = config.mcp_dir();
|
|
||||||
let python_path = config.python_executable();
|
|
||||||
let server_py_path = mcp_dir.join("server.py");
|
|
||||||
|
|
||||||
// セットアップの確認
|
|
||||||
if !server_py_path.exists() {
|
|
||||||
eprintln!("❌ server.pyが見つかりません。先に 'aigpt server setup' を実行してください。");
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if !python_path.exists() {
|
|
||||||
eprintln!("❌ Python実行ファイルが見つかりません。先に 'aigpt server setup' を実行してください。");
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
// サーバーの起動
|
|
||||||
println!("🔗 サーバーを起動中... (Ctrl+Cで停止)");
|
|
||||||
let mut child = OtherCommand::new(&python_path)
|
|
||||||
.arg("server.py")
|
|
||||||
.current_dir(&mcp_dir)
|
|
||||||
.spawn()
|
|
||||||
.expect("MCP Serverの起動に失敗しました");
|
|
||||||
|
|
||||||
// サーバーの終了を待機
|
|
||||||
match child.wait() {
|
|
||||||
Ok(status) => {
|
|
||||||
if status.success() {
|
|
||||||
println!("✅ MCP Serverが正常に終了しました");
|
|
||||||
} else {
|
|
||||||
println!("❌ MCP Serverが異常終了しました: {}", status);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Err(e) => {
|
|
||||||
eprintln!("❌ MCP Serverの実行中にエラーが発生しました: {}", e);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub async fn chat(message: &str) {
|
|
||||||
println!("💬 チャットを開始しています...");
|
|
||||||
|
|
||||||
let config = ConfigPaths::new();
|
|
||||||
let mcp_dir = config.mcp_dir();
|
|
||||||
let python_path = config.python_executable();
|
|
||||||
let chat_py_path = mcp_dir.join("chat.py");
|
|
||||||
|
|
||||||
// セットアップの確認
|
|
||||||
if !chat_py_path.exists() {
|
|
||||||
eprintln!("❌ chat.pyが見つかりません。先に 'aigpt server setup' を実行してください。");
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if !python_path.exists() {
|
|
||||||
eprintln!("❌ Python実行ファイルが見つかりません。先に 'aigpt server setup' を実行してください。");
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
// チャットの実行
|
|
||||||
let output = OtherCommand::new(&python_path)
|
|
||||||
.args(&["chat.py", message])
|
|
||||||
.current_dir(&mcp_dir)
|
|
||||||
.output()
|
|
||||||
.expect("chat.pyの実行に失敗しました");
|
|
||||||
|
|
||||||
if output.status.success() {
|
|
||||||
let stdout = String::from_utf8_lossy(&output.stdout);
|
|
||||||
let stderr = String::from_utf8_lossy(&output.stderr);
|
|
||||||
|
|
||||||
if !stderr.is_empty() {
|
|
||||||
print!("{}", stderr);
|
|
||||||
}
|
|
||||||
print!("{}", stdout);
|
|
||||||
} else {
|
|
||||||
eprintln!("❌ チャット実行エラー: {}", String::from_utf8_lossy(&output.stderr));
|
|
||||||
}
|
|
||||||
}
|
|
17
src/aigpt.egg-info/PKG-INFO
Normal file
17
src/aigpt.egg-info/PKG-INFO
Normal file
@ -0,0 +1,17 @@
|
|||||||
|
Metadata-Version: 2.4
|
||||||
|
Name: aigpt
|
||||||
|
Version: 0.1.0
|
||||||
|
Summary: Autonomous transmission AI with unique personality based on relationship parameters
|
||||||
|
Requires-Python: >=3.10
|
||||||
|
Requires-Dist: click>=8.0.0
|
||||||
|
Requires-Dist: typer>=0.9.0
|
||||||
|
Requires-Dist: fastapi-mcp>=0.1.0
|
||||||
|
Requires-Dist: pydantic>=2.0.0
|
||||||
|
Requires-Dist: httpx>=0.24.0
|
||||||
|
Requires-Dist: rich>=13.0.0
|
||||||
|
Requires-Dist: python-dotenv>=1.0.0
|
||||||
|
Requires-Dist: ollama>=0.1.0
|
||||||
|
Requires-Dist: openai>=1.0.0
|
||||||
|
Requires-Dist: uvicorn>=0.23.0
|
||||||
|
Requires-Dist: apscheduler>=3.10.0
|
||||||
|
Requires-Dist: croniter>=1.3.0
|
20
src/aigpt.egg-info/SOURCES.txt
Normal file
20
src/aigpt.egg-info/SOURCES.txt
Normal file
@ -0,0 +1,20 @@
|
|||||||
|
README.md
|
||||||
|
pyproject.toml
|
||||||
|
src/aigpt/__init__.py
|
||||||
|
src/aigpt/ai_provider.py
|
||||||
|
src/aigpt/cli.py
|
||||||
|
src/aigpt/config.py
|
||||||
|
src/aigpt/fortune.py
|
||||||
|
src/aigpt/mcp_server.py
|
||||||
|
src/aigpt/memory.py
|
||||||
|
src/aigpt/models.py
|
||||||
|
src/aigpt/persona.py
|
||||||
|
src/aigpt/relationship.py
|
||||||
|
src/aigpt/scheduler.py
|
||||||
|
src/aigpt/transmission.py
|
||||||
|
src/aigpt.egg-info/PKG-INFO
|
||||||
|
src/aigpt.egg-info/SOURCES.txt
|
||||||
|
src/aigpt.egg-info/dependency_links.txt
|
||||||
|
src/aigpt.egg-info/entry_points.txt
|
||||||
|
src/aigpt.egg-info/requires.txt
|
||||||
|
src/aigpt.egg-info/top_level.txt
|
1
src/aigpt.egg-info/dependency_links.txt
Normal file
1
src/aigpt.egg-info/dependency_links.txt
Normal file
@ -0,0 +1 @@
|
|||||||
|
|
2
src/aigpt.egg-info/entry_points.txt
Normal file
2
src/aigpt.egg-info/entry_points.txt
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
[console_scripts]
|
||||||
|
aigpt = aigpt.cli:app
|
12
src/aigpt.egg-info/requires.txt
Normal file
12
src/aigpt.egg-info/requires.txt
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
click>=8.0.0
|
||||||
|
typer>=0.9.0
|
||||||
|
fastapi-mcp>=0.1.0
|
||||||
|
pydantic>=2.0.0
|
||||||
|
httpx>=0.24.0
|
||||||
|
rich>=13.0.0
|
||||||
|
python-dotenv>=1.0.0
|
||||||
|
ollama>=0.1.0
|
||||||
|
openai>=1.0.0
|
||||||
|
uvicorn>=0.23.0
|
||||||
|
apscheduler>=3.10.0
|
||||||
|
croniter>=1.3.0
|
1
src/aigpt.egg-info/top_level.txt
Normal file
1
src/aigpt.egg-info/top_level.txt
Normal file
@ -0,0 +1 @@
|
|||||||
|
aigpt
|
176
src/aigpt/cli.py
176
src/aigpt/cli.py
@ -7,6 +7,12 @@ from rich.console import Console
|
|||||||
from rich.table import Table
|
from rich.table import Table
|
||||||
from rich.panel import Panel
|
from rich.panel import Panel
|
||||||
from datetime import datetime, timedelta
|
from datetime import datetime, timedelta
|
||||||
|
import subprocess
|
||||||
|
import shlex
|
||||||
|
from prompt_toolkit import prompt
|
||||||
|
from prompt_toolkit.completion import WordCompleter
|
||||||
|
from prompt_toolkit.history import FileHistory
|
||||||
|
from prompt_toolkit.auto_suggest import AutoSuggestFromHistory
|
||||||
|
|
||||||
from .persona import Persona
|
from .persona import Persona
|
||||||
from .transmission import TransmissionController
|
from .transmission import TransmissionController
|
||||||
@ -369,6 +375,176 @@ def schedule(
|
|||||||
console.print("Valid actions: add, list, enable, disable, remove, run")
|
console.print("Valid actions: add, list, enable, disable, remove, run")
|
||||||
|
|
||||||
|
|
||||||
|
@app.command()
|
||||||
|
def shell(
|
||||||
|
data_dir: Optional[Path] = typer.Option(None, "--data-dir", "-d", help="Data directory"),
|
||||||
|
model: Optional[str] = typer.Option("qwen2.5", "--model", "-m", help="AI model to use"),
|
||||||
|
provider: Optional[str] = typer.Option("ollama", "--provider", help="AI provider (ollama/openai)")
|
||||||
|
):
|
||||||
|
"""Interactive shell mode (ai.shell)"""
|
||||||
|
persona = get_persona(data_dir)
|
||||||
|
|
||||||
|
# Create AI provider
|
||||||
|
ai_provider = None
|
||||||
|
if provider and model:
|
||||||
|
try:
|
||||||
|
ai_provider = create_ai_provider(provider, model)
|
||||||
|
console.print(f"[dim]Using {provider} with model {model}[/dim]\n")
|
||||||
|
except Exception as e:
|
||||||
|
console.print(f"[yellow]Warning: Could not create AI provider: {e}[/yellow]")
|
||||||
|
console.print("[yellow]Falling back to simple responses[/yellow]\n")
|
||||||
|
|
||||||
|
# Welcome message
|
||||||
|
console.print(Panel(
|
||||||
|
"[cyan]Welcome to ai.shell[/cyan]\n\n"
|
||||||
|
"Interactive AI-powered shell with command execution\n\n"
|
||||||
|
"Commands:\n"
|
||||||
|
" help - Show available commands\n"
|
||||||
|
" exit/quit - Exit shell\n"
|
||||||
|
" !<command> - Execute shell command\n"
|
||||||
|
" chat <message> - Chat with AI\n"
|
||||||
|
" status - Show AI status\n"
|
||||||
|
" clear - Clear screen\n\n"
|
||||||
|
"Type any message to interact with AI",
|
||||||
|
title="ai.shell",
|
||||||
|
border_style="green"
|
||||||
|
))
|
||||||
|
|
||||||
|
# Command completer
|
||||||
|
commands = ['help', 'exit', 'quit', 'chat', 'status', 'clear', 'fortune', 'relationships']
|
||||||
|
completer = WordCompleter(commands)
|
||||||
|
|
||||||
|
# History file
|
||||||
|
history_file = data_dir / "shell_history.txt"
|
||||||
|
history = FileHistory(str(history_file))
|
||||||
|
|
||||||
|
# Main shell loop
|
||||||
|
current_user = "shell_user" # Default user for shell sessions
|
||||||
|
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
# Get input with completion
|
||||||
|
user_input = prompt(
|
||||||
|
"ai.shell> ",
|
||||||
|
completer=completer,
|
||||||
|
history=history,
|
||||||
|
auto_suggest=AutoSuggestFromHistory()
|
||||||
|
).strip()
|
||||||
|
|
||||||
|
if not user_input:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Exit commands
|
||||||
|
if user_input.lower() in ['exit', 'quit']:
|
||||||
|
console.print("[cyan]Goodbye![/cyan]")
|
||||||
|
break
|
||||||
|
|
||||||
|
# Help command
|
||||||
|
elif user_input.lower() == 'help':
|
||||||
|
console.print(Panel(
|
||||||
|
"[cyan]ai.shell Commands:[/cyan]\n\n"
|
||||||
|
" help - Show this help message\n"
|
||||||
|
" exit/quit - Exit the shell\n"
|
||||||
|
" !<command> - Execute a shell command\n"
|
||||||
|
" chat <message> - Explicitly chat with AI\n"
|
||||||
|
" status - Show AI status\n"
|
||||||
|
" fortune - Check AI fortune\n"
|
||||||
|
" relationships - List all relationships\n"
|
||||||
|
" clear - Clear the screen\n\n"
|
||||||
|
"You can also type any message to chat with AI\n"
|
||||||
|
"Use Tab for command completion",
|
||||||
|
title="Help",
|
||||||
|
border_style="yellow"
|
||||||
|
))
|
||||||
|
|
||||||
|
# Clear command
|
||||||
|
elif user_input.lower() == 'clear':
|
||||||
|
console.clear()
|
||||||
|
|
||||||
|
# Shell command execution
|
||||||
|
elif user_input.startswith('!'):
|
||||||
|
cmd = user_input[1:].strip()
|
||||||
|
if cmd:
|
||||||
|
try:
|
||||||
|
# Execute command
|
||||||
|
result = subprocess.run(
|
||||||
|
shlex.split(cmd),
|
||||||
|
capture_output=True,
|
||||||
|
text=True,
|
||||||
|
shell=False
|
||||||
|
)
|
||||||
|
|
||||||
|
if result.stdout:
|
||||||
|
console.print(result.stdout.rstrip())
|
||||||
|
if result.stderr:
|
||||||
|
console.print(f"[red]{result.stderr.rstrip()}[/red]")
|
||||||
|
|
||||||
|
if result.returncode != 0:
|
||||||
|
console.print(f"[red]Command exited with code {result.returncode}[/red]")
|
||||||
|
except FileNotFoundError:
|
||||||
|
console.print(f"[red]Command not found: {cmd.split()[0]}[/red]")
|
||||||
|
except Exception as e:
|
||||||
|
console.print(f"[red]Error executing command: {e}[/red]")
|
||||||
|
|
||||||
|
# Status command
|
||||||
|
elif user_input.lower() == 'status':
|
||||||
|
state = persona.get_current_state()
|
||||||
|
console.print(f"\nMood: {state.current_mood}")
|
||||||
|
console.print(f"Fortune: {state.fortune.fortune_value}/10")
|
||||||
|
|
||||||
|
rel = persona.relationships.get_or_create_relationship(current_user)
|
||||||
|
console.print(f"\nRelationship Status: {rel.status.value}")
|
||||||
|
console.print(f"Score: {rel.score:.2f} / {rel.threshold}")
|
||||||
|
|
||||||
|
# Fortune command
|
||||||
|
elif user_input.lower() == 'fortune':
|
||||||
|
fortune = persona.fortune_system.get_today_fortune()
|
||||||
|
fortune_bar = "🌟" * fortune.fortune_value + "☆" * (10 - fortune.fortune_value)
|
||||||
|
console.print(f"\n{fortune_bar}")
|
||||||
|
console.print(f"Today's Fortune: {fortune.fortune_value}/10")
|
||||||
|
|
||||||
|
# Relationships command
|
||||||
|
elif user_input.lower() == 'relationships':
|
||||||
|
if persona.relationships.relationships:
|
||||||
|
console.print("\n[cyan]Relationships:[/cyan]")
|
||||||
|
for user_id, rel in persona.relationships.relationships.items():
|
||||||
|
console.print(f" {user_id[:16]}... - {rel.status.value} ({rel.score:.2f})")
|
||||||
|
else:
|
||||||
|
console.print("[yellow]No relationships yet[/yellow]")
|
||||||
|
|
||||||
|
# Chat command or direct message
|
||||||
|
else:
|
||||||
|
# Remove 'chat' prefix if present
|
||||||
|
if user_input.lower().startswith('chat '):
|
||||||
|
message = user_input[5:].strip()
|
||||||
|
else:
|
||||||
|
message = user_input
|
||||||
|
|
||||||
|
if message:
|
||||||
|
# Process interaction with AI
|
||||||
|
response, relationship_delta = persona.process_interaction(
|
||||||
|
current_user, message, ai_provider
|
||||||
|
)
|
||||||
|
|
||||||
|
# Display response
|
||||||
|
console.print(f"\n[cyan]AI:[/cyan] {response}")
|
||||||
|
|
||||||
|
# Show relationship change if significant
|
||||||
|
if abs(relationship_delta) >= 0.1:
|
||||||
|
if relationship_delta > 0:
|
||||||
|
console.print(f"[green](+{relationship_delta:.2f} relationship)[/green]")
|
||||||
|
else:
|
||||||
|
console.print(f"[red]({relationship_delta:.2f} relationship)[/red]")
|
||||||
|
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
console.print("\n[yellow]Use 'exit' or 'quit' to leave the shell[/yellow]")
|
||||||
|
except EOFError:
|
||||||
|
console.print("\n[cyan]Goodbye![/cyan]")
|
||||||
|
break
|
||||||
|
except Exception as e:
|
||||||
|
console.print(f"[red]Error: {e}[/red]")
|
||||||
|
|
||||||
|
|
||||||
@app.command()
|
@app.command()
|
||||||
def config(
|
def config(
|
||||||
action: str = typer.Argument(..., help="Action: get, set, delete, list"),
|
action: str = typer.Argument(..., help="Action: get, set, delete, list"),
|
||||||
|
Loading…
x
Reference in New Issue
Block a user