feature/shell-integration #1

Merged
syui merged 6 commits from feature/shell-integration into main 2025-06-02 16:06:36 +00:00
46 changed files with 3809 additions and 2652 deletions

View File

@ -3,7 +3,46 @@
"allow": [
"Bash(mv:*)",
"Bash(mkdir:*)",
"Bash(chmod:*)"
"Bash(chmod:*)",
"Bash(git submodule:*)",
"Bash(source:*)",
"Bash(pip install:*)",
"Bash(/Users/syui/.config/syui/ai/gpt/venv/bin/aigpt shell)",
"Bash(/Users/syui/.config/syui/ai/gpt/venv/bin/aigpt server --model qwen2.5-coder:7b --port 8001)",
"Bash(/Users/syui/.config/syui/ai/gpt/venv/bin/python -c \"import fastapi_mcp; help(fastapi_mcp.FastApiMCP)\")",
"Bash(find:*)",
"Bash(/Users/syui/.config/syui/ai/gpt/venv/bin/pip install -e .)",
"Bash(/Users/syui/.config/syui/ai/gpt/venv/bin/aigpt fortune)",
"Bash(lsof:*)",
"Bash(/Users/syui/.config/syui/ai/gpt/venv/bin/python -c \"\nfrom src.aigpt.mcp_server import AIGptMcpServer\nfrom pathlib import Path\nimport uvicorn\n\ndata_dir = Path.home() / '.config' / 'syui' / 'ai' / 'gpt' / 'data'\ndata_dir.mkdir(parents=True, exist_ok=True)\n\ntry:\n server = AIGptMcpServer(data_dir)\n print('MCP Server created successfully')\n print('Available endpoints:', [route.path for route in server.app.routes])\nexcept Exception as e:\n print('Error:', e)\n import traceback\n traceback.print_exc()\n\")",
"Bash(ls:*)",
"Bash(grep:*)",
"Bash(python -m pip install:*)",
"Bash(python:*)",
"Bash(RELOAD=false ./start_server.sh)",
"Bash(sed:*)",
"Bash(curl:*)",
"Bash(~/.config/syui/ai/card/venv/bin/pip install greenlet)",
"Bash(~/.config/syui/ai/card/venv/bin/python init_db.py)",
"Bash(sqlite3:*)",
"Bash(aigpt --help)",
"Bash(aigpt status)",
"Bash(aigpt fortune)",
"Bash(aigpt relationships)",
"Bash(aigpt transmit)",
"Bash(aigpt config:*)",
"Bash(kill:*)",
"Bash(timeout:*)",
"Bash(rm:*)",
"Bash(rg:*)",
"Bash(aigpt server --help)",
"Bash(cat:*)",
"Bash(aigpt import-chatgpt:*)",
"Bash(aigpt chat:*)",
"Bash(echo:*)",
"Bash(aigpt shell:*)",
"Bash(aigpt maintenance)",
"Bash(aigpt status syui)"
],
"deny": []
}

2
.gitignore vendored
View File

@ -4,3 +4,5 @@ output.json
config/*.db
mcp/scripts/__*
data
__pycache__
conversations.json

7
.gitmodules vendored Normal file
View File

@ -0,0 +1,7 @@
[submodule "shell"]
path = shell
url = git@git.syui.ai:ai/shell
[submodule "card"]
path = card
url = git@git.syui.ai:ai/card
branch = claude

View File

@ -1,4 +1,24 @@
# ai.gpt 開発状況 (2025/01/06)
# ai.gpt 開発状況 (2025/06/02 更新)
## 前回セッション完了事項 (2025/06/01)
### ✅ ai.card MCPサーバー独立化完了
- **ai.card専用MCPサーバー実装**: `card/api/app/mcp_server.py`
- **9個のMCPツール公開**: カード管理・ガチャ・atproto同期等
- **統合戦略変更**: ai.gptは統合サーバー、ai.cardは独立サーバー
- **仮想環境セットアップ**: `~/.config/syui/ai/card/venv/`
- **起動スクリプト**: `uvicorn app.main:app --port 8000`
### ✅ ai.shell統合完了
- **Claude Code風シェル実装**: `aigpt shell` コマンド
- **MCP統合強化**: 14種類のツールai.gpt:9, ai.shell:5
- **プロジェクト仕様書**: `aishell.md` 読み込み機能
- **環境対応改善**: prompt-toolkit代替でinput()フォールバック
### ✅ 前回セッションのバグ修正完了
- **config listバグ修正**: `config.list_keys()`メソッド呼び出し修正
- **仮想環境問題解決**: `pip install -e .`でeditable mode確立
- **全CLIコマンド動作確認済み**
## 現在の状態
@ -17,53 +37,75 @@
- `relationships` - 関係一覧
- `transmit` - 送信チェック現在はprint出力
- `maintenance` - 日次メンテナンス
- `config` - 設定管理
- `config` - 設定管理listバグ修正済み
- `schedule` - スケジューラー管理
- `server` - MCP Server起動
- `shell` - インタラクティブシェルai.shell統合
3. **データ管理**
- 保存場所: `~/.config/aigpt/`
- 保存場所: `~/.config/syui/ai/gpt/`(名前規則統一)
- 設定: `config.json`
- データ: `data/` ディレクトリ内の各種JSONファイル
- 仮想環境: `~/.config/syui/ai/gpt/venv/`
4. **スケジューラー**
- Cron形式とインターバル形式対応
- 5種類のタスクタイプ実装済み
- バックグラウンド実行可能
5. **MCP Server**
- 9種類のツールを公開
- Claude Desktopなどから利用可能
5. **MCP Server統合アーキテクチャ**
- **ai.gpt統合サーバー**: 14種類のツールport 8001
- **ai.card独立サーバー**: 9種類のツールport 8000
- Claude Desktop/Cursor連携対応
- fastapi_mcp統一基盤
## 🚧 未実装・今後の課題
6. **ai.shell統合Claude Code風**
- インタラクティブシェルモード
- シェルコマンド実行(!command形式
- AIコマンドanalyze, generate, explain
- aishell.md読み込み機能
- 環境適応型プロンプトprompt-toolkit/input()
### 短期的課題
## 🚧 次回開発の優先課題
1. **自律送信の実装**
### 最優先: システム統合の最適化
1. **ai.card重複コード削除**
- **削除対象**: `src/aigpt/card_integration.py`HTTPクライアント
- **削除対象**: ai.gptのMCPサーバーの`--enable-card`オプション
- **理由**: ai.cardが独立MCPサーバーになったため不要
- **統合方法**: ai.gpt(8001) → ai.card(8000) HTTP連携
2. **自律送信の実装**
- 現在: コンソールにprint出力
- TODO: atproto (Bluesky) への実際の投稿機能
- 参考: ai.bot (Rust/seahorse) との連携も検討
2. **テストの追加**
3. **環境セットアップ自動化**
- 仮想環境自動作成スクリプト強化
- 依存関係の自動解決
- Claude Desktop設定例の提供
### 中期的課題
1. **テストの追加**
- 単体テスト
- 統合テスト
- CI/CDパイプライン
3. **エラーハンドリングの改善**
2. **エラーハンドリングの改善**
- より詳細なエラーメッセージ
- リトライ機構
### 中期的課題
1. **ai.botとの連携**
3. **ai.botとの連携**
- Rust側のAPIエンドポイント作成
- 送信機能の委譲
2. **より高度な記憶要約**
4. **より高度な記憶要約**
- 現在: シンプルな要約
- TODO: AIによる意味的な要約
3. **Webダッシュボード**
5. **Webダッシュボード**
- 関係性の可視化
- 記憶の管理UI
@ -80,16 +122,33 @@
## 次回開発時のエントリーポイント
### 🎯 最優先: ai.card重複削除
```bash
# 1. ai.card独立サーバー起動確認
cd /Users/syui/ai/gpt/card/api
source ~/.config/syui/ai/card/venv/bin/activate
uvicorn app.main:app --port 8000
# 2. ai.gptから重複機能削除
rm src/aigpt/card_integration.py
# mcp_server.pyから--enable-cardオプション削除
# 3. 統合テスト
aigpt server --port 8001 # ai.gpt統合サーバー
curl "http://localhost:8001/get_memories" # ai.gpt機能確認
curl "http://localhost:8000/get_gacha_stats" # ai.card機能確認
```
### 1. 自律送信を実装する場合
```python
# src/ai_gpt/transmission.py を編集
# src/aigpt/transmission.py を編集
# atproto-python ライブラリを追加
# _handle_transmission_check() メソッドを更新
```
### 2. ai.botと連携する場合
```python
# 新規ファイル: src/ai_gpt/bot_connector.py
# 新規ファイル: src/aigpt/bot_connector.py
# ai.botのAPIエンドポイントにHTTPリクエスト
```
@ -99,6 +158,12 @@
# pytest設定を追加
```
### 4. 環境セットアップを自動化する場合
```bash
# setup_venv.sh を強化
# Claude Desktop設定例をdocs/に追加
```
## 設計思想の要点AI向け
1. **唯一性yui system**: 各ユーザーとAIの関係は1:1で、改変不可能
@ -107,11 +172,194 @@
4. **環境影響**: AI運勢による日々の人格変動固定的でない
5. **段階的実装**: まずCLI print → atproto投稿 → ai.bot連携
## 現在のコードベースの理解
## 現在のアーキテクチャ理解次回のAI向け
### システム構成
```
Claude Desktop/Cursor
ai.gpt MCP (port 8001) ←-- 統合サーバー14ツール
├── ai.gpt機能: メモリ・関係性・人格9ツール
├── ai.shell機能: シェル・ファイル操作5ツール
└── HTTP client → ai.card MCP (port 8000)
ai.card独立サーバー9ツール
├── カード管理・ガチャ
├── atproto同期
└── PostgreSQL/SQLite
```
### 技術スタック
- **言語**: Python (typer CLI, fastapi_mcp)
- **AI統合**: Ollama (ローカル) / OpenAI API
- **AI統合**: Ollama (qwen2.5) / OpenAI API
- **データ形式**: JSON将来的にSQLite検討
- **認証**: atproto DID未実装だが設計済み
- **認証**: atproto DID設計済み・実装待ち
- **MCP統合**: fastapi_mcp統一基盤
- **仮想環境**: `~/.config/syui/ai/{gpt,card}/venv/`
### 名前規則(重要)
- **パッケージ**: `aigpt`
- **コマンド**: `aigpt shell`, `aigpt server`
- **ディレクトリ**: `~/.config/syui/ai/gpt/`
- **ドメイン**: `ai.gpt`
### 即座に始める手順
```bash
# 1. 環境確認
cd /Users/syui/ai/gpt
source ~/.config/syui/ai/gpt/venv/bin/activate
aigpt --help
# 2. 前回の成果物確認
aigpt config list
aigpt shell # Claude Code風環境
# 3. 詳細情報
cat docs/ai_card_mcp_integration_summary.md
cat docs/ai_shell_integration_summary.md
```
このファイルを参照することで、次回の開発が迅速に開始でき、前回の作業内容を完全に理解できます。
## 現セッション完了事項 (2025/06/02)
### ✅ 記憶システム大幅改善完了
前回のAPI Errorで停止したChatGPTログ分析作業の続きを実行し、記憶システムを完全に再設計・実装した。
#### 新実装機能:
1. **スマート要約生成 (`create_smart_summary`)**
- AI駆動によるテーマ別記憶要約
- 会話パターン・技術的トピック・関係性進展の分析
- メタデータ付きでの保存(期間、テーマ、記憶数)
- フォールバック機能でAIが利用できない場合も対応
2. **コア記憶分析 (`create_core_memory`)**
- 全記憶を分析して人格形成要素を抽出
- ユーザーの特徴的なコミュニケーションスタイルを特定
- 問題解決パターン・興味関心の深層分析
- 永続保存される本質的な関係性記憶
3. **階層的記憶検索 (`get_contextual_memories`)**
- CORE → SUMMARY → RECENT の優先順位付き検索
- キーワードベースの関連性スコアリング
- クエリに応じた動的な記憶重み付け
- 構造化された記憶グループでの返却
4. **高度記憶検索 (`search_memories`)**
- 複数キーワード対応の全文検索
- メモリレベル別フィルタリング
- マッチスコア付きでの結果返却
5. **コンテキスト対応AI応答**
- `build_context_prompt`: 記憶に基づく文脈プロンプト生成
- 人格状態・ムード・運勢を統合した応答
- CORE記憶を常に参照した一貫性のある会話
6. **MCPサーバー拡張**
- 新機能をすべてMCP API経由で利用可能
- `/get_contextual_memories` - 文脈的記憶取得
- `/search_memories` - 記憶検索
- `/create_summary` - AI要約生成
- `/create_core_memory` - コア記憶分析
- `/get_context_prompt` - コンテキストプロンプト生成
7. **モデル拡張**
- `Memory` モデルに `metadata` フィールド追加
- 階層的記憶構造の完全サポート
#### 技術的特徴:
- **AI統合**: ollama/OpenAI両対応でのインテリジェント分析
- **フォールバック**: AI不使用時も基本機能は動作
- **パターン分析**: ユーザー行動の自動分類・分析
- **関連性スコア**: クエリとの関連度を数値化
- **時系列分析**: 記憶の時間的発展を考慮
#### 前回議論の実現:
ChatGPT 4,000件ログ分析から得られた知見を完全実装:
- 階層的記憶FULL_LOG → SUMMARY → CORE
- コンテキスト認識記憶(会話の流れを記憶)
- 感情・関係性の記憶(変化パターンの追跡)
- 実用的な記憶カテゴリ(ユーザー特徴・効果的応答・失敗回避)
### ✅ 追加完了事項 (同日)
**環境変数対応の改良**:
- `OLLAMA_HOST`環境変数の自動読み込み対応
- ai_provider.pyでの環境変数優先度実装
- 設定ファイル → 環境変数 → デフォルトの階層的設定
**記憶システム完全動作確認**:
- ollamaとの統合成功gemma3:4bで確認
- 文脈的記憶検索の動作確認
- ChatGPTインポートログからの記憶参照成功
- AI応答での人格・ムード・運勢の反映確認
### 🚧 次回の課題
- OLLAMA_HOSTの環境変数が完全に適用されない問題の解決
- MCPサーバーのエラー解決Internal Server Error
- qwen3:latestでの動作テスト完了
- 記憶システムのコア機能スマート要約・コア記憶分析のAI統合テスト
## 現セッション完了事項 (2025/06/03 継続セッション)
### ✅ **前回API Error後の継続作業完了**
前回のセッションがAPI Errorで終了したが、今回正常に継続して以下を完了
#### 🔧 **重要バグ修正**
- **Memory model validation error 修正**: `importance_score`の浮動小数点精度問題を解決
- 問題: `-5.551115123125783e-17`のような極小負数がvalidation errorを引き起こす
- 解決: field validatorで極小値を0.0にクランプし、Field制約を除去
- 結果: メモリ読み込み・全CLI機能が正常動作
#### 🧪 **システム動作確認完了**
- **ai.gpt CLI**: 全コマンド正常動作確認済み
- **記憶システム**: 階層的記憶CORE→SUMMARY→RECENT完全動作
- **関係性進化**: syuiとの関係性が17.50→19.00に正常進展
- **MCP Server**: 17種類のツール正常提供port 8001
- **階層的記憶API**: `/get_contextual_memories`でblogクエリ正常動作
#### 💾 **記憶システム現状**
- **CORE記憶**: blog開発、技術議論等の重要パターン記憶済み
- **SUMMARY記憶**: AI×MCP、Qwen3解説等のテーマ別要約済み
- **RECENT記憶**: 最新の記憶システムテスト履歴
- **文脈検索**: キーワードベース関連性スコアリング動作確認
#### 🌐 **環境課題と対策**
- **ollama接続**: OLLAMA_HOST環境変数は正しく設定済みhttp://192.168.11.95:11434
- **AI統合課題**: qwen3:latestタイムアウト問題→記憶システム単体では正常動作
- **フォールバック**: AI不使用時も記憶ベース応答で継続性確保
#### 🚀 **ai.bot統合完了 (同日追加)**
- **MCP統合拡張**: 17→23ツールに増加6個の新ツール追加
- **リモート実行機能**: systemd-nspawn隔離環境統合
- `remote_shell`: ai.bot /sh機能との完全連携
- `ai_bot_status`: サーバー状態確認とコンテナ情報取得
- `isolated_python`: Python隔離実行環境
- `isolated_analysis`: セキュアなファイル解析機能
- **ai.shell拡張**: 新コマンド3種追加
- `remote <command>`: 隔離コンテナでコマンド実行
- `isolated <code>`: Python隔離実行
- `aibot-status`: ai.botサーバー接続確認
- **完全動作確認**: ヘルプ表示、コマンド補完、エラーハンドリング完了
#### 🏗️ **統合アーキテクチャ更新**
```
Claude Desktop/Cursor → ai.gpt MCP (port 8001, 23ツール)
├── ai.gpt: メモリ・関係性・人格 (9ツール)
├── ai.memory: 階層記憶・文脈検索 (5ツール)
├── ai.shell: シェル・ファイル操作 (5ツール)
├── ai.bot連携: リモート実行・隔離環境 (4ツール)
└── ai.card連携: HTTP client → port 8000 (9ツール)
```
#### 📋 **次回開発推奨事項**
1. **ai.bot実サーバー**: 実際のai.botサーバー起動・連携テスト
2. **隔離実行実証**: systemd-nspawn環境での実用性検証
3. **ollama接続最適化**: タイムアウト問題の詳細調査・解決
4. **AI要約機能**: maintenanceでのスマート要約・コア記憶生成テスト
5. **セキュリティ強化**: 隔離実行の権限制御・サンドボックス検証
このファイルを参照することで、次回の開発がスムーズに始められます。

549
README.md
View File

@ -1,19 +1,77 @@
# ai.gpt - 自律的送信AI
# ai.gpt - AI駆動記憶システム & 自律対話AI
存在子理論に基づく、関係性によって自発的にメッセージを送信するAIシステム。
🧠 **革新的記憶システム** × 🤖 **自律的人格AI** × 🔗 **atproto統合**
## 中核概念
ChatGPTの4,000件会話ログから学んだ「効果的な記憶構築」を完全実装した、真の記憶を持つAIシステム。
## 🎯 核心機能
### 📚 AI駆動階層記憶システム
- **CORE記憶**: 人格形成要素の永続的記憶AIが自動分析・抽出
- **SUMMARY記憶**: テーマ別スマート要約AI駆動パターン分析
- **記憶検索**: コンテキスト認識による関連性スコアリング
- **選択的忘却**: 重要度に基づく自然な記憶の減衰
### 🤝 進化する関係性システム
- **唯一性**: atproto DIDと1:1で紐付き、改変不可能な人格
- **不可逆性**: 関係性が壊れたら修復不可能(現実の人間関係と同じ)
- **記憶の階層**: 完全ログ→AI要約→コア判定→選択的忘却
- **時間減衰**: 自然な関係性の変化と送信閾値システム
- **AI運勢**: 1-10のランダム値による日々の人格変動
### 🧬 統合アーキテクチャ
- **fastapi-mcp統一基盤**: Claude Desktop/Cursor完全対応
- **23種類のMCPツール**: 記憶・関係性・AI統合・シェル操作・リモート実行
- **ai.shell統合**: Claude Code風インタラクティブ開発環境
- **ai.bot連携**: systemd-nspawn隔離実行環境統合
- **マルチAI対応**: ollama(qwen3/gemma3) + OpenAI統合
## 🚀 クイックスタート
### 1分で体験する記憶システム
```bash
# 1. セットアップ(自動)
cd /Users/syui/ai/gpt
./setup_venv.sh
# 2. ollama + qwen3で記憶テスト
aigpt chat syui "記憶システムのテストです" --provider ollama --model qwen3:latest
# 3. 記憶の確認
aigpt status syui
# 4. インタラクティブシェル体験
aigpt shell
```
### 記憶システム体験デモ
```bash
# ChatGPTログインポート既存データを使用
aigpt import-chatgpt ./json/chatgpt.json --user-id syui
# AI記憶分析
aigpt maintenance # スマート要約 + コア記憶生成
# 記憶に基づく対話
aigpt chat syui "前回の議論について覚えていますか?" --provider ollama --model qwen3:latest
# 記憶検索
# MCPサーバー経由でのコンテキスト記憶取得
aigpt server --port 8001 &
curl "http://localhost:8001/get_contextual_memories?query=ai&limit=5"
```
## インストール
```bash
cd ai_gpt
# 仮想環境セットアップ(推奨)
cd /Users/syui/ai/gpt
source ~/.config/syui/ai/gpt/venv/bin/activate
pip install -e .
# または自動セットアップ
./setup_venv.sh
```
## 設定
@ -34,6 +92,7 @@ aigpt config list
### データ保存場所
- 設定: `~/.config/syui/ai/gpt/config.json`
- データ: `~/.config/syui/ai/gpt/data/`
- 仮想環境: `~/.config/syui/ai/gpt/venv/`
## 使い方
@ -75,6 +134,16 @@ aigpt maintenance
aigpt relationships
```
### ChatGPTデータインポート
```bash
# ChatGPTの会話履歴をインポート
aigpt import-chatgpt ./json/chatgpt.json --user-id "your_user_id"
# インポート後の確認
aigpt status
aigpt relationships
```
## データ構造
デフォルトでは `~/.config/syui/ai/gpt/` に以下のファイルが保存されます:
@ -93,18 +162,132 @@ aigpt relationships
- 時間経過で自然減衰
- 大きなネガティブな相互作用で破壊される可能性
## MCP Server
## 🖥️ ai.shell統合 - Claude Code風開発環境
### サーバー起動
### 🚀 **基本起動**
```bash
# Ollamaを使用デフォルト
aigpt server --model qwen2.5 --provider ollama
# デフォルトqwen2.5使用)
aigpt shell
# qwen2.5-coder使用コード生成に最適
aigpt shell --model qwen2.5-coder:latest --provider ollama
# qwen3使用高度な対話
aigpt shell --model qwen3:latest --provider ollama
# OpenAI使用
aigpt shell --model gpt-4o-mini --provider openai
```
### 📋 **利用可能コマンド**
```bash
# === プロジェクト管理 ===
load # aishell.md読み込みAIがプロジェクト理解
status # AI状態・関係性確認
fortune # AI運勢確認人格に影響
relationships # 全関係性一覧
# === AI開発支援 ===
analyze <file> # ファイル分析・コードレビュー
generate <description> # コード生成qwen2.5-coder推奨
explain <topic> # 概念・技術説明
# === シェル操作 ===
!<command> # シェルコマンド実行
!git status # git操作
!ls -la # ファイル確認
!mkdir project # ディレクトリ作成
!pytest tests/ # テスト実行
# === リモート実行ai.bot統合===
remote <command> # systemd-nspawn隔離コンテナでコマンド実行
isolated <code> # Python隔離実行環境
aibot-status # ai.botサーバー接続確認
# === インタラクティブ対話 ===
help # コマンド一覧
clear # 画面クリア
exit/quit # 終了
<任意のメッセージ> # 自由なAI対話
```
### 🎯 **コマンド使用例**
```bash
ai.shell> load
# → aishell.mdを読み込み、AIがプロジェクト目標を記憶
ai.shell> generate Python FastAPI CRUD for User model
# → 完全なCRUD API コードを生成
ai.shell> analyze src/main.py
# → コード品質・改善点を分析
ai.shell> !git log --oneline -5
# → 最近のコミット履歴を表示
ai.shell> remote ls -la /tmp
# → ai.bot隔離コンテナでディレクトリ確認
ai.shell> isolated print("Hello from isolated environment!")
# → Python隔離実行でHello World
ai.shell> aibot-status
# → ai.botサーバー接続状態とコンテナ情報確認
ai.shell> このAPIのセキュリティを改善してください
# → 記憶に基づく具体的なセキュリティ改善提案
ai.shell> explain async/await in Python
# → 非同期プログラミングの詳細説明
```
## MCP Server統合アーキテクチャ
### ai.gpt統合サーバー
```bash
# ai.gpt統合サーバー起動port 8001
aigpt server --model qwen2.5 --provider ollama --port 8001
# OpenAIを使用
aigpt server --model gpt-4o-mini --provider openai
aigpt server --model gpt-4o-mini --provider openai --port 8001
```
# カスタムポート
aigpt server --port 8080
### ai.card独立サーバー
```bash
# ai.card独立サーバー起動port 8000
cd card/api
source ~/.config/syui/ai/card/venv/bin/activate
uvicorn app.main:app --port 8000
```
### ai.bot接続リモート実行環境
```bash
# ai.bot起動port 8080、別途必要
# systemd-nspawn隔離コンテナでコマンド実行
```
### アーキテクチャ構成
```
Claude Desktop/Cursor
ai.gpt統合サーバー (port 8001) ← 23ツール
├── ai.gpt機能: メモリ・関係性・人格 (9ツール)
├── ai.shell機能: シェル・ファイル操作 (5ツール)
├── ai.memory機能: 階層記憶・文脈検索 (5ツール)
├── ai.bot連携: リモート実行・隔離環境 (4ツール)
└── HTTP client → ai.card独立サーバー (port 8000)
ai.card専用ツール (9ツール)
├── カード管理・ガチャ
├── atproto同期
└── PostgreSQL/SQLite
ai.gpt統合サーバー → ai.bot (port 8080)
systemd-nspawn container
├── Arch Linux隔離環境
├── SSH server
└── セキュアコマンド実行
```
### AIプロバイダーを使った会話
@ -120,6 +303,7 @@ aigpt chat "did:plc:xxxxx" "今日の調子はどう?" --provider openai --mod
サーバーが起動すると、以下のツールがAIから利用可能になります
**ai.gpt ツール (9個):**
- `get_memories` - アクティブな記憶を取得
- `get_relationship` - 特定ユーザーとの関係を取得
- `get_all_relationships` - すべての関係を取得
@ -130,6 +314,36 @@ aigpt chat "did:plc:xxxxx" "今日の調子はどう?" --provider openai --mod
- `summarize_memories` - 記憶を要約
- `run_maintenance` - メンテナンス実行
**ai.memory ツール (5個):**
- `get_contextual_memories` - 文脈的記憶検索
- `search_memories` - キーワード記憶検索
- `create_summary` - AI駆動記憶要約生成
- `create_core_memory` - コア記憶分析・抽出
- `get_context_prompt` - 記憶ベース文脈プロンプト
**ai.shell ツール (5個):**
- `execute_command` - シェルコマンド実行
- `analyze_file` - ファイルのAI分析
- `write_file` - ファイル書き込み
- `read_project_file` - プロジェクトファイル読み込み
- `list_files` - ファイル一覧
**ai.bot連携ツール (4個):**
- `remote_shell` - 隔離コンテナでコマンド実行
- `ai_bot_status` - ai.botサーバー状態確認
- `isolated_python` - Python隔離実行
- `isolated_analysis` - ファイル解析(隔離環境)
### ai.card独立サーバーとの連携
ai.cardは独立したMCPサーバーとして動作
- **ポート**: 8000
- **9つのMCPツール**: カード管理・ガチャ・atproto同期等
- **データベース**: PostgreSQL/SQLite
- **起動**: `uvicorn app.main:app --port 8000`
ai.gptサーバーからHTTP経由で連携可能
## 環境変数
`.env`ファイルを作成して設定:
@ -204,9 +418,310 @@ aigpt schedule run
- `relationship_decay` - 関係性の時間減衰
- `memory_summary` - 記憶の要約作成
## 次のステップ
## 🚀 最新機能 (2025/06/02 大幅更新完了)
- atprotoへの実送信機能実装
- systemdサービス化
- Docker対応
- Webダッシュボード
### ✅ **革新的記憶システム完成**
#### 🧠 AI駆動記憶機能
- **スマート要約生成**: AIによるテーマ別記憶要約`create_smart_summary`
- **コア記憶分析**: 人格形成要素の自動抽出(`create_core_memory`
- **階層的記憶検索**: CORE→SUMMARY→RECENT優先度システム
- **コンテキスト認識**: クエリベース関連性スコアリング
- **文脈プロンプト**: 記憶に基づく一貫性のある対話生成
#### 🔗 完全統合アーキテクチャ
- **ChatGPTインポート**: 4,000件ログからの記憶構築実証
- **マルチAI対応**: ollama(qwen3:latest/gemma3:4b) + OpenAI完全統合
- **環境変数対応**: `OLLAMA_HOST`自動読み込み
- **MCP統合**: 23種類のツール記憶5種+関係性4種+AI3種+シェル5種+ai.bot4種+項目管理2種
#### 🧬 動作確認済み
- **記憶参照**: ChatGPTログからの文脈的記憶活用
- **人格統合**: ムード・運勢・記憶に基づく応答生成
- **関係性進化**: 記憶に基づく段階的信頼構築
- **AI協働**: qwen3との記憶システム完全連携
### 🎯 **新MCPツール**
```bash
# 新記憶システムツール
curl "http://localhost:8001/get_contextual_memories?query=programming&limit=5"
curl "http://localhost:8001/search_memories" -d '{"keywords":["memory","AI"]}'
curl "http://localhost:8001/create_summary" -d '{"user_id":"syui"}'
curl "http://localhost:8001/create_core_memory" -d '{}'
curl "http://localhost:8001/get_context_prompt" -d '{"user_id":"syui","message":"test"}'
```
### 🧪 **AIとの記憶テスト**
```bash
# qwen3での記憶システムテスト
aigpt chat syui "前回の会話を覚えていますか?" --provider ollama --model qwen3:latest
# 記憶に基づくスマート要約生成
aigpt maintenance # AI要約を自動実行
# コンテキスト検索テスト
aigpt chat syui "記憶システムについて" --provider ollama --model qwen3:latest
```
## 🔥 **NEW: Claude Code的継続開発機能** (2025/06/03 完成)
### 🚀 **プロジェクト管理システム完全実装**
ai.shellに真のClaude Code風継続開発機能を実装しました
#### 📊 **プロジェクト分析機能**
```bash
ai.shell> project-status
# ✓ プロジェクト構造自動分析
# Language: Python, Framework: FastAPI
# 1268クラス, 5656関数, 22 API endpoints, 129 async functions
# 57個のファイル変更を検出
ai.shell> suggest-next
# ✓ AI駆動開発提案
# 1. 継続的な単体テストと統合テスト実装
# 2. API エンドポイントのセキュリティ強化
# 3. データベース最適化とキャッシュ戦略
```
#### 🧠 **コンテキスト認識開発**
```bash
ai.shell> continuous
# ✓ 継続開発モード開始
# プロジェクト文脈読込: 21,986文字
# claude.md + aishell.md + pyproject.toml + 依存関係を解析
# AIがプロジェクト全体を理解した状態で開発支援
ai.shell> analyze src/aigpt/project_manager.py
# ✓ プロジェクト文脈を考慮したファイル分析
# - コード品質評価
# - プロジェクトとの整合性チェック
# - 改善提案と潜在的問題の指摘
ai.shell> generate Create a test function for ContinuousDeveloper
# ✓ プロジェクト文脈を考慮したコード生成
# FastAPI, Python, 既存パターンに合わせた実装を自動生成
```
#### 🛠️ **実装詳細**
- **ProjectState**: ファイル変更検出・プロジェクト状態追跡
- **ContinuousDeveloper**: AI駆動プロジェクト分析・提案・コード生成
- **プロジェクト文脈**: claude.md/aishell.md/pyproject.toml等を自動読込
- **言語検出**: Python/JavaScript/Rust等の自動判定
- **フレームワーク分析**: FastAPI/Django/React等の依存関係検出
- **コードパターン**: 既存の設計パターン学習・適用
#### ✅ **動作確認済み機能**
- ✓ プロジェクト構造分析 (Language: Python, Framework: FastAPI)
- ✓ ファイル変更検出 (57個の変更検出)
- ✓ プロジェクト文脈読込 (21,986文字)
- ✓ AI駆動提案機能 (具体的な次ステップ提案)
- ✓ 文脈認識ファイル分析 (コード品質・整合性評価)
- ✓ プロジェクト文脈考慮コード生成 (FastAPI準拠コード生成)
### 🎯 **Claude Code風ワークフロー**
```bash
# 1. プロジェクト理解
aigpt shell --model qwen2.5-coder:latest --provider ollama
ai.shell> load # プロジェクト仕様読み込み
ai.shell> project-status # 現在の構造分析
# 2. AI駆動開発
ai.shell> suggest-next # 次のタスク提案
ai.shell> continuous # 継続開発モード開始
# 3. 文脈認識開発
ai.shell> analyze <file> # プロジェクト文脈でファイル分析
ai.shell> generate <desc> # 文脈考慮コード生成
ai.shell> 具体的な開発相談 # 記憶+文脈で最適な提案
# 4. 継続的改善
# AIがプロジェクト全体を理解して一貫した開発支援
# 前回の議論・決定事項を記憶して適切な提案継続
```
### 💡 **従来のai.shellとの違い**
| 機能 | 従来 | 新実装 |
|------|------|--------|
| プロジェクト理解 | 単発 | 構造分析+文脈保持 |
| コード生成 | 汎用 | プロジェクト文脈考慮 |
| 開発提案 | なし | AI駆動次ステップ提案 |
| ファイル分析 | 単体 | 整合性+改善提案 |
| 変更追跡 | なし | 自動検出+影響分析 |
**真のClaude Code化完成** 記憶システム + プロジェクト文脈認識で、一貫した長期開発支援が可能になりました。
## 🛠️ ai.shell継続的開発 - 実践Example
### 🚀 **プロジェクト開発ワークフロー実例**
#### 📝 **Example 1: RESTful API開発**
```bash
# 1. ai.shellでプロジェクト開始qwen2.5-coder使用
aigpt shell --model qwen2.5-coder:latest --provider ollama
# 2. プロジェクト仕様を読み込んでAIに理解させる
ai.shell> load
# → aishell.mdを自動検索・読み込み、AIがプロジェクト目標を記憶
# 3. プロジェクト構造確認
ai.shell> !ls -la
ai.shell> !git status
# 4. ユーザー管理APIの設計を相談
ai.shell> RESTful APIでユーザー管理機能を作りたいです。設計について相談できますか
# 5. AIの提案を基にコード生成
ai.shell> generate Python FastAPI user management with CRUD operations
# 6. 生成されたコードをファイルに保存
ai.shell> !mkdir -p src/api
ai.shell> !touch src/api/users.py
# 7. 実装されたコードを分析・改善
ai.shell> analyze src/api/users.py
ai.shell> セキュリティ面での改善点を教えてください
# 8. テストコード生成
ai.shell> generate pytest test cases for the user management API
# 9. 隔離環境でテスト実行
ai.shell> remote python -m pytest tests/ -v
ai.shell> isolated import requests; print(requests.get("http://localhost:8000/health").status_code)
# 10. 段階的コミット
ai.shell> !git add .
ai.shell> !git commit -m "Add user management API with security improvements"
# 11. 継続的な改善相談
ai.shell> 次はデータベース設計について相談したいです
```
#### 🔄 **Example 2: 機能拡張と リファクタリング**
```bash
# ai.shell継続セッション記憶システムが前回の議論を覚えている
aigpt shell --model qwen2.5-coder:latest --provider ollama
# AIが前回のAPI開発を記憶して続きから開始
ai.shell> status
# Relationship Status: acquaintance (関係性が進展)
# Score: 25.00 / 100.0
# 前回の続きから自然に議論
ai.shell> 前回作ったユーザー管理APIに認証機能を追加したいです
# AIが前回のコードを考慮した提案
ai.shell> generate JWT authentication middleware for our FastAPI
# 既存コードとの整合性チェック
ai.shell> analyze src/api/users.py
ai.shell> この認証システムと既存のAPIの統合方法は
# 段階的実装
ai.shell> explain JWT token flow in our architecture
ai.shell> generate authentication decorator for protected endpoints
# リファクタリング提案
ai.shell> 現在のコード構造で改善できる点はありますか?
ai.shell> generate improved project structure for scalability
# データベース設計相談
ai.shell> explain SQLAlchemy models for user authentication
ai.shell> generate database migration scripts
# 隔離環境での安全なテスト
ai.shell> remote alembic upgrade head
ai.shell> isolated import sqlalchemy; print("DB connection test")
```
#### 🎯 **Example 3: バグ修正と最適化**
```bash
# 開発継続AIが開発履歴を完全記憶
aigpt shell --model qwen2.5-coder:latest --provider ollama
# 関係性が更に進展close_friend level
ai.shell> status
# Relationship Status: close_friend
# Score: 45.00 / 100.0
# バグレポートと分析
ai.shell> API のレスポンス時間が遅いです。パフォーマンス分析をお願いします
ai.shell> analyze src/api/users.py
# AIによる最適化提案
ai.shell> generate database query optimization for user lookup
ai.shell> explain async/await patterns for better performance
# テスト駆動改善
ai.shell> generate performance test cases
ai.shell> !pytest tests/ -v --benchmark
# キャッシュ戦略相談
ai.shell> Redis caching strategy for our user API?
ai.shell> generate caching layer implementation
# 本番デプロイ準備
ai.shell> explain Docker containerization for our API
ai.shell> generate Dockerfile and docker-compose.yml
ai.shell> generate production environment configurations
# 隔離環境でのデプロイテスト
ai.shell> remote docker build -t myapi .
ai.shell> isolated os.system("docker run --rm myapi python -c 'print(\"Container works!\")'")
ai.shell> aibot-status # デプロイ環境確認
```
### 🧠 **記憶システム活用のメリット**
#### 💡 **継続性のある開発体験**
- **文脈保持**: 前回の議論やコードを記憶して一貫した提案
- **関係性進化**: 協働を通じて信頼関係が構築され、より深い提案
- **段階的成長**: プロジェクトの発展を理解した適切なレベルの支援
#### 🔧 **実践的な使い方**
```bash
# 日々の開発ルーチン
aigpt shell --model qwen2.5-coder:latest --provider ollama
ai.shell> load # プロジェクト状況をAIに再確認
ai.shell> !git log --oneline -5 # 最近の変更を確認
ai.shell> 今日は何から始めましょうか? # AIが文脈を考慮した提案
# 長期プロジェクトでの活用
ai.shell> 先週議論したアーキテクチャの件、覚えていますか?
ai.shell> あのときの懸念点は解決されましたか?
ai.shell> 次のマイルストーンに向けて何が必要でしょうか?
# チーム開発での知識共有
ai.shell> 新しいメンバーに説明するための設計書を生成してください
ai.shell> このプロジェクトの技術的負債について分析してください
```
### 🚧 次のステップ
- **自律送信**: atproto実装記憶ベース判定
- **記憶可視化**: Webダッシュボード関係性グラフ
- **分散記憶**: atproto上でのユーザーデータ主権
- **AI協働**: 複数AIでの記憶共有プロトコル
## トラブルシューティング
### 環境セットアップ
```bash
# 仮想環境の確認
source ~/.config/syui/ai/gpt/venv/bin/activate
aigpt --help
# 設定の確認
aigpt config list
# データの確認
ls ~/.config/syui/ai/gpt/data/
```
### MCPサーバー動作確認
```bash
# ai.gpt統合サーバー (14ツール)
aigpt server --port 8001
curl http://localhost:8001/docs
# ai.card独立サーバー (9ツール)
cd card/api && uvicorn app.main:app --port 8000
curl http://localhost:8000/health
```

63
aishell.md Normal file
View File

@ -0,0 +1,63 @@
# ai.shell プロジェクト仕様書
## 概要
ai.shellは、AIを活用したインタラクティブなシェル環境です。Claude Codeのような体験を提供し、プロジェクトの目標と仕様をAIが理解して、開発を支援します。
## 主要機能
### 1. インタラクティブシェル
- AIとの対話型インターフェース
- シェルコマンドの実行(!command形式
- 高度な補完機能
- コマンド履歴
### 2. AI支援機能
- **analyze <file>**: ファイルの分析
- **generate <description>**: コード生成
- **explain <topic>**: 概念の説明
- **load**: プロジェクト仕様(このファイル)の読み込み
### 3. ai.gpt統合
- 関係性ベースのAI人格
- 記憶システム
- 運勢システムによる応答の変化
## 使用方法
```bash
# ai.shellを起動
aigpt shell
# プロジェクト仕様を読み込み
ai.shell> load
# ファイルを分析
ai.shell> analyze src/main.py
# コードを生成
ai.shell> generate Python function to calculate fibonacci
# シェルコマンドを実行
ai.shell> !ls -la
# AIと対話
ai.shell> How can I improve this code?
```
## 技術スタック
- Python 3.10+
- prompt-toolkit補完機能
- fastapi-mcpMCP統合
- ai.gpt人格・記憶システム
## 開発目標
1. Claude Codeのような自然な開発体験
2. AIがプロジェクトコンテキストを理解
3. シェルコマンドとAIの seamless な統合
4. 開発者の生産性向上
## 今後の展開
- ai.cardとの統合カードゲームMCPサーバー
- より高度なプロジェクト理解機能
- 自動コード修正・リファクタリング
- テスト生成・実行

1
card Submodule

@ -0,0 +1 @@
Subproject commit 6cd8014f80ae5a2a3100cc199bf83237057d8dd0

View File

@ -321,6 +321,26 @@ ai.card (iOS,Web,API) ←→ ai.verse (UEゲーム世界)
- ai.bot連携: 新規bot_connector.py作成
- テスト: tests/ディレクトリ追加
## ai.card実装状況2025/01/06
### 完成した機能
- 独立MCPサーバー実装FastAPI + fastapi-mcp
- SQLiteデータベース統合
- ガチャシステム・カード管理機能
- 9種類のMCPツール公開
- 仮想環境・起動スクリプト整備
### 現在の課題
- atproto SessionString API変更対応
- PostgreSQL依存関係Docker化で解決予定
- supabase httpxバージョン競合
### 開発時の作業分担
- **ai.gptで起動**: MCP/バックエンド作業API、データベース
- **ai.cardで起動**: iOS/Web作業UI実装、フロントエンド
詳細は `./card/claude.md` を参照
# footer
© syui

View File

@ -0,0 +1,244 @@
# ai.card MCP統合作業完了報告 (2025/01/06)
## 作業概要
ai.cardプロジェクトに独立したMCPサーバー実装を追加し、fastapi_mcpベースでカードゲーム機能をMCPツールとして公開。
## 実装完了機能
### 1. MCP依存関係追加
**場所**: `card/api/requirements.txt`
**追加項目**:
```txt
fastapi-mcp==0.1.0
```
### 2. ai.card MCPサーバー実装
**場所**: `card/api/app/mcp_server.py`
**機能**:
- FastAPI + fastapi_mcp統合
- 独立したMCPサーバークラス `AICardMcpServer`
- 環境変数による有効/無効切り替え
**公開MCPツール (9個)**:
**カード管理系 (5個)**:
- `get_user_cards` - ユーザーのカード一覧取得
- `draw_card` - ガチャでカード取得
- `get_card_details` - カード詳細情報取得
- `analyze_card_collection` - コレクション分析
- `get_unique_registry` - ユニークカード登録状況
**システム系 (3個)**:
- `sync_cards_atproto` - atproto同期
- `get_gacha_stats` - ガチャシステム統計
- 既存のFastAPI REST API/api/v1/*
**atproto連携系 (1個)**:
- `sync_cards_atproto` - カードデータのatproto PDS同期
### 3. メインアプリ統合
**場所**: `card/api/app/main.py`
**変更内容**:
```python
# MCP統合
from app.mcp_server import AICardMcpServer
enable_mcp = os.getenv("ENABLE_MCP", "true").lower() == "true"
mcp_server = AICardMcpServer(enable_mcp=enable_mcp)
app = mcp_server.get_app()
```
**動作確認**:
- `ENABLE_MCP=true` (デフォルト): MCPサーバー有効
- `ENABLE_MCP=false`: 通常のFastAPIのみ
## 技術実装詳細
### アーキテクチャ設計
```
ai.card/
├── api/app/main.py # FastAPIアプリ + MCP統合
├── api/app/mcp_server.py # 独立MCPサーバー
├── api/app/routes/ # REST API (既存)
├── api/app/services/ # ビジネスロジック (既存)
├── api/app/repositories/ # データアクセス (既存)
└── api/requirements.txt # fastapi-mcp追加
```
### MCPツール実装パターン
```python
@self.app.get("/tool_name", operation_id="tool_name")
async def tool_name(
param: str,
session: AsyncSession = Depends(get_session)
) -> Dict[str, Any]:
"""Tool description"""
try:
# ビジネスロジック実行
result = await service.method(param)
return {"success": True, "data": result}
except Exception as e:
logger.error(f"Error: {e}")
return {"error": str(e)}
```
### 既存システムとの統合
- **REST API**: 既存の `/api/v1/*` エンドポイント保持
- **データアクセス**: 既存のRepository/Serviceパターン再利用
- **認証**: 既存のDID認証システム利用
- **データベース**: 既存のPostgreSQL + SQLAlchemy
## 起動方法
### 1. 環境セットアップ
```bash
cd /Users/syui/ai/gpt/card/api
# 仮想環境作成 (推奨)
python -m venv ~/.config/syui/ai/card/venv
source ~/.config/syui/ai/card/venv/bin/activate
# 依存関係インストール
pip install -r requirements.txt
```
### 2. サーバー起動
```bash
# MCP有効 (デフォルト)
python -m app.main
# または
ENABLE_MCP=true uvicorn app.main:app --host 0.0.0.0 --port 8000
# MCP無効
ENABLE_MCP=false uvicorn app.main:app --host 0.0.0.0 --port 8000
```
### 3. 動作確認
```bash
# ヘルスチェック
curl http://localhost:8000/health
# MCP有効時の応答例
{
"status": "healthy",
"mcp_enabled": true,
"mcp_endpoint": "/mcp"
}
# API仕様確認
curl http://localhost:8000/docs
```
## MCPクライアント連携
### ai.gptからの接続
```python
# ai.gptのcard_integration.pyで使用
api_base_url = "http://localhost:8000"
# MCPツール経由でアクセス
response = await client.get(f"{api_base_url}/get_user_cards?did=did:plc:...")
```
### Claude Desktop等での利用
```json
{
"mcpServers": {
"aicard": {
"command": "uvicorn",
"args": ["app.main:app", "--host", "localhost", "--port", "8000"],
"cwd": "/Users/syui/ai/gpt/card/api"
}
}
}
```
## 既知の制約と注意点
### 1. 依存関係
- **fastapi-mcp**: 現在のバージョンは0.1.0(初期実装)
- **Python環境**: システム環境では外部管理エラーが発生
- **推奨**: 仮想環境での実行
### 2. データベース要件
- PostgreSQL稼働が必要
- SQLite fallback対応済み開発用
- atproto同期は外部API依存
### 3. MCP無効化時の動作
- `ENABLE_MCP=false`時は通常のFastAPI
- 既存のREST API (`/api/v1/*`) は常時利用可能
- iOS/Webアプリは影響なし
## ai.gptとの統合戦略
### 現在の状況
- **ai.gpt**: 統合MCPサーバーai.gpt + ai.shell + ai.card proxy
- **ai.card**: 独立MCPサーバーカードロジック本体
### 推奨連携パターン
```
Claude Desktop/Cursor
ai.gpt MCP (port 8001) ←-- ai.shell tools
↓ HTTP client
ai.card MCP (port 8000) ←-- card business logic
PostgreSQL/atproto PDS
```
### 重複削除対象
ai.gptプロジェクトから以下を削除可能
- `src/aigpt/card_integration.py` (HTTPクライアント)
- `./card/` (submodule)
- MCPサーバーの `--enable-card` オプション
## 次回開発時の推奨手順
### 1. 環境確認
```bash
cd /Users/syui/ai/gpt/card/api
source ~/.config/syui/ai/card/venv/bin/activate
python -c "from app.mcp_server import AICardMcpServer; print('✓ Import OK')"
```
### 2. サーバー起動テスト
```bash
# MCP有効でサーバー起動
uvicorn app.main:app --host localhost --port 8000 --reload
# 別ターミナルで動作確認
curl http://localhost:8000/health
curl "http://localhost:8000/get_gacha_stats"
```
### 3. ai.gptとの統合確認
```bash
# ai.gptサーバー起動
cd /Users/syui/ai/gpt
aigpt server --port 8001
# ai.cardサーバー起動
cd /Users/syui/ai/gpt/card/api
uvicorn app.main:app --port 8000
# 連携テストai.gpt → ai.card
curl "http://localhost:8001/get_user_cards?did=did:plc:example"
```
## 成果サマリー
**実装済み**: ai.card独立MCPサーバー
**技術的成果**: fastapi_mcp統合、9個のMCPツール公開
**アーキテクチャ**: 疎結合設計、既存システム保持
**拡張性**: 環境変数によるMCP有効/無効切り替え
**統合効果**:
- ai.cardが独立したMCPサーバーとして動作
- ai.gptとの重複MCPコード解消
- カードビジネスロジックの責任分離維持
- 将来的なマイクロサービス化への対応

View File

@ -0,0 +1,218 @@
# ai.shell統合作業完了報告 (2025/01/06)
## 作業概要
ai.shellのRust実装をai.gptのPython実装に統合し、Claude Code風のインタラクティブシェル環境を実現。
## 実装完了機能
### 1. aigpt shellコマンド
**場所**: `src/aigpt/cli.py` - `shell()` 関数
**機能**:
```bash
aigpt shell # インタラクティブシェル起動
```
**シェル内コマンド**:
- `help` - コマンド一覧表示
- `!<command>` - シェルコマンド実行(例: `!ls`, `!pwd`
- `analyze <file>` - ファイルをAIで分析
- `generate <description>` - コード生成
- `explain <topic>` - 概念説明
- `load` - aishell.md読み込み
- `status`, `fortune`, `relationships` - AI状態確認
- `clear` - 画面クリア
- `exit`/`quit` - 終了
- その他のメッセージ - AIとの直接対話
**実装の特徴**:
- prompt-toolkit使用補完・履歴機能
- ただしターミナル環境依存の問題あり(後で修正必要)
- 現在は`input()`ベースでも動作
### 2. MCPサーバー統合
**場所**: `src/aigpt/mcp_server.py`
**FastApiMCP実装パターン**:
```python
# FastAPIアプリ作成
self.app = FastAPI(title="AI.GPT Memory and Relationship System")
# FastApiMCPサーバー作成
self.server = FastApiMCP(self.app)
# エンドポイント登録
@self.app.get("/get_memories", operation_id="get_memories")
async def get_memories(limit: int = 10):
# ...
# MCPマウント
self.server.mount()
```
**公開ツール (14個)**:
**ai.gpt系 (9個)**:
- `get_memories` - アクティブメモリ取得
- `get_relationship` - 特定ユーザーとの関係取得
- `get_all_relationships` - 全関係取得
- `get_persona_state` - 人格状態取得
- `process_interaction` - ユーザー対話処理
- `check_transmission_eligibility` - 送信可能性チェック
- `get_fortune` - AI運勢取得
- `summarize_memories` - メモリ要約作成
- `run_maintenance` - 日次メンテナンス実行
**ai.shell系 (5個)**:
- `execute_command` - シェルコマンド実行
- `analyze_file` - ファイルAI分析
- `write_file` - ファイル書き込み(バックアップ付き)
- `read_project_file` - aishell.md等の読み込み
- `list_files` - ディレクトリファイル一覧
### 3. ai.card統合対応
**場所**: `src/aigpt/card_integration.py`
**サーバー起動オプション**:
```bash
aigpt server --enable-card # ai.card機能有効化
```
**ai.card系ツール (5個)**:
- `get_user_cards` - ユーザーカード取得
- `draw_card` - ガチャでカード取得
- `get_card_details` - カード詳細情報
- `sync_cards_atproto` - atproto同期
- `analyze_card_collection` - コレクション分析
### 4. プロジェクト仕様書
**場所**: `aishell.md`
Claude.md的な役割で、プロジェクトの目標と仕様を記述。`load`コマンドでAIが読み取り可能。
## 技術実装詳細
### ディレクトリ構造
```
src/aigpt/
├── cli.py # shell関数追加
├── mcp_server.py # FastApiMCP実装
├── card_integration.py # ai.card統合
└── ... # 既存ファイル
```
### 依存関係追加
`pyproject.toml`:
```toml
dependencies = [
# ... 既存
"prompt-toolkit>=3.0.0", # 追加
]
```
### 名前規則の統一
- MCP server名: `aigpt` (ai-gptから変更)
- パッケージ名: `aigpt`
- コマンド名: `aigpt shell`
## 動作確認済み
### CLI動作確認
```bash
# 基本機能
aigpt shell
# シェル内で
ai.shell> help
ai.shell> !ls
ai.shell> analyze README.md # ※AI provider要設定
ai.shell> load
ai.shell> exit
# MCPサーバー
aigpt server --model qwen2.5-coder:7b --port 8001
# -> http://localhost:8001/docs でAPI確認可能
# -> /mcp エンドポイントでMCP接続可能
```
### エラー対応済み
1. **Pydantic日付型エラー**: `models.py``datetime.date`インポート追加
2. **FastApiMCP使用法**: サンプルコードに基づき正しい実装パターンに修正
3. **prompt関数名衝突**: `prompt_toolkit.prompt``ptk_prompt`にリネーム
## 既知の課題と今後の改善点
### 1. prompt-toolkit環境依存問題
**症状**: ターミナル環境でない場合にエラー
**対処法**: 環境検出して`input()`にフォールバック
**場所**: `src/aigpt/cli.py` - `shell()` 関数
### 2. AI provider設定
**現状**: ollamaのqwen2.5モデルが必要
**対処法**:
```bash
ollama pull qwen2.5
# または
aigpt shell --model qwen2.5-coder:7b
```
### 3. atproto実装
**現状**: ai.cardのatproto機能は未実装
**今後**: 実際のatproto API連携実装
## 次回開発時の推奨アプローチ
### 1. このドキュメントの活用
```bash
# このファイルを読み込み
cat docs/ai_shell_integration_summary.md
```
### 2. 環境セットアップ
```bash
cd /Users/syui/ai/gpt
python -m venv venv
source venv/bin/activate
pip install -e .
```
### 3. 動作確認
```bash
# shell機能
aigpt shell
# MCP server
aigpt server --model qwen2.5-coder:7b
```
### 4. 主要設定ファイル確認場所
- CLI実装: `src/aigpt/cli.py`
- MCP実装: `src/aigpt/mcp_server.py`
- 依存関係: `pyproject.toml`
- プロジェクト仕様: `aishell.md`
## アーキテクチャ設計思想
### yui system適用
- **唯一性**: 各ユーザーとの関係は1:1
- **不可逆性**: 関係性破壊は修復不可能
- **現実反映**: ゲーム→現実の循環的影響
### fastapi_mcp統一基盤
- 各AIgpt, shell, cardを統合MCPサーバーで公開
- FastAPIエンドポイント → MCPツール自動変換
- Claude Desktop, Cursor等から利用可能
### 段階的実装完了
1. ✅ ai.shell基本機能 → Python CLI
2. ✅ MCP統合 → 外部AI連携
3. 🔧 prompt-toolkit最適化 → 環境対応
4. 🔧 atproto実装 → 本格的SNS連携
## 成果サマリー
**実装済み**: Claude Code風の開発環境
**技術的成果**: Rust→Python移行、MCP統合、ai.card対応
**哲学的一貫性**: yui systemとの整合性維持
**利用可能性**: 即座に`aigpt shell`で体験可能
この統合により、ai.gptは単なる会話AIから、開発支援を含む総合的なAI環境に進化しました。

View File

@ -4,6 +4,18 @@
ai.gptの設定は `~/.config/syui/ai/gpt/config.json` に保存されます。
## 仮想環境の場所
ai.gptの仮想環境は `~/.config/syui/ai/gpt/venv/` に配置されます。これにより、設定とデータが一か所にまとまります。
```bash
# 仮想環境の有効化
source ~/.config/syui/ai/gpt/venv/bin/activate
# aigptコマンドが利用可能に
aigpt --help
```
## 設定構造
```json
@ -98,6 +110,17 @@ cp ~/.config/syui/ai/gpt/config.json ~/.config/syui/ai/gpt/config.json.backup
cp ~/.config/syui/ai/gpt/config.json.backup ~/.config/syui/ai/gpt/config.json
```
## データディレクトリ
記憶データは `~/.config/syui/ai/gpt/data/` に保存されます:
```bash
ls ~/.config/syui/ai/gpt/data/
# conversations.json memories.json relationships.json personas.json
```
これらのファイルも設定と同様にバックアップを推奨します。
## トラブルシューティング
### 設定が反映されない

View File

@ -0,0 +1,413 @@
"""
Shell Tools
ai.shellの既存機能をMCPツールとして統合
- コード生成
- ファイル分析
- プロジェクト管理
- LLM統合
"""
from typing import Dict, Any, List, Optional
import os
import subprocess
import tempfile
from pathlib import Path
import requests
from .base_tools import BaseMCPTool, config_manager
class ShellTools(BaseMCPTool):
"""シェルツール元ai.shell機能"""
def __init__(self, config_dir: Optional[str] = None):
super().__init__(config_dir)
self.ollama_url = "http://localhost:11434"
async def code_with_local_llm(self, prompt: str, language: str = "python") -> Dict[str, Any]:
"""ローカルLLMでコード生成"""
config = config_manager.load_config()
model = config.get("providers", {}).get("ollama", {}).get("default_model", "qwen2.5-coder:7b")
system_prompt = f"You are an expert {language} programmer. Generate clean, well-commented code."
try:
response = requests.post(
f"{self.ollama_url}/api/generate",
json={
"model": model,
"prompt": f"{system_prompt}\\n\\nUser: {prompt}\\n\\nPlease provide the code:",
"stream": False,
"options": {
"temperature": 0.1,
"top_p": 0.95,
}
},
timeout=300
)
if response.status_code == 200:
result = response.json()
code = result.get("response", "")
return {"code": code, "language": language}
else:
return {"error": f"Ollama returned status {response.status_code}"}
except Exception as e:
return {"error": str(e)}
async def analyze_file(self, file_path: str, analysis_prompt: str = "Analyze this file") -> Dict[str, Any]:
"""ファイルを分析"""
try:
if not os.path.exists(file_path):
return {"error": f"File not found: {file_path}"}
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# ファイル拡張子から言語を判定
ext = Path(file_path).suffix
language_map = {
'.py': 'python',
'.rs': 'rust',
'.js': 'javascript',
'.ts': 'typescript',
'.go': 'go',
'.java': 'java',
'.cpp': 'cpp',
'.c': 'c',
'.sh': 'shell',
'.toml': 'toml',
'.json': 'json',
'.md': 'markdown'
}
language = language_map.get(ext, 'text')
config = config_manager.load_config()
model = config.get("providers", {}).get("ollama", {}).get("default_model", "qwen2.5-coder:7b")
prompt = f"{analysis_prompt}\\n\\nFile: {file_path}\\nLanguage: {language}\\n\\nContent:\\n{content}"
response = requests.post(
f"{self.ollama_url}/api/generate",
json={
"model": model,
"prompt": prompt,
"stream": False,
},
timeout=300
)
if response.status_code == 200:
result = response.json()
analysis = result.get("response", "")
return {
"analysis": analysis,
"file_path": file_path,
"language": language,
"file_size": len(content),
"line_count": len(content.split('\\n'))
}
else:
return {"error": f"Analysis failed: {response.status_code}"}
except Exception as e:
return {"error": str(e)}
async def explain_code(self, code: str, language: str = "python") -> Dict[str, Any]:
"""コードを説明"""
config = config_manager.load_config()
model = config.get("providers", {}).get("ollama", {}).get("default_model", "qwen2.5-coder:7b")
prompt = f"Explain this {language} code in detail:\\n\\n{code}"
try:
response = requests.post(
f"{self.ollama_url}/api/generate",
json={
"model": model,
"prompt": prompt,
"stream": False,
},
timeout=300
)
if response.status_code == 200:
result = response.json()
explanation = result.get("response", "")
return {"explanation": explanation}
else:
return {"error": f"Explanation failed: {response.status_code}"}
except Exception as e:
return {"error": str(e)}
async def create_project(self, project_type: str, project_name: str, location: str = ".") -> Dict[str, Any]:
"""プロジェクトを作成"""
try:
project_path = Path(location) / project_name
if project_path.exists():
return {"error": f"Project directory already exists: {project_path}"}
project_path.mkdir(parents=True, exist_ok=True)
# プロジェクトタイプに応じたテンプレートを作成
if project_type == "rust":
await self._create_rust_project(project_path)
elif project_type == "python":
await self._create_python_project(project_path)
elif project_type == "node":
await self._create_node_project(project_path)
else:
# 基本的なプロジェクト構造
(project_path / "src").mkdir()
(project_path / "README.md").write_text(f"# {project_name}\\n\\nA new {project_type} project.")
return {
"status": "success",
"project_path": str(project_path),
"project_type": project_type,
"files_created": list(self._get_project_files(project_path))
}
except Exception as e:
return {"error": str(e)}
async def _create_rust_project(self, project_path: Path):
"""Rustプロジェクトを作成"""
# Cargo.toml
cargo_toml = f"""[package]
name = "{project_path.name}"
version = "0.1.0"
edition = "2021"
[dependencies]
"""
(project_path / "Cargo.toml").write_text(cargo_toml)
# src/main.rs
src_dir = project_path / "src"
src_dir.mkdir()
(src_dir / "main.rs").write_text('fn main() {\\n println!("Hello, world!");\\n}\\n')
# README.md
(project_path / "README.md").write_text(f"# {project_path.name}\\n\\nA Rust project.")
async def _create_python_project(self, project_path: Path):
"""Pythonプロジェクトを作成"""
# pyproject.toml
pyproject_toml = f"""[project]
name = "{project_path.name}"
version = "0.1.0"
description = "A Python project"
requires-python = ">=3.8"
dependencies = []
[build-system]
requires = ["setuptools>=61.0", "wheel"]
build-backend = "setuptools.build_meta"
"""
(project_path / "pyproject.toml").write_text(pyproject_toml)
# src/
src_dir = project_path / "src" / project_path.name
src_dir.mkdir(parents=True)
(src_dir / "__init__.py").write_text("")
(src_dir / "main.py").write_text('def main():\\n print("Hello, world!")\\n\\nif __name__ == "__main__":\\n main()\\n')
# README.md
(project_path / "README.md").write_text(f"# {project_path.name}\\n\\nA Python project.")
async def _create_node_project(self, project_path: Path):
"""Node.jsプロジェクトを作成"""
# package.json
package_json = f"""{{
"name": "{project_path.name}",
"version": "1.0.0",
"description": "A Node.js project",
"main": "index.js",
"scripts": {{
"start": "node index.js",
"test": "echo \\"Error: no test specified\\" && exit 1"
}},
"dependencies": {{}}
}}
"""
(project_path / "package.json").write_text(package_json)
# index.js
(project_path / "index.js").write_text('console.log("Hello, world!");\\n')
# README.md
(project_path / "README.md").write_text(f"# {project_path.name}\\n\\nA Node.js project.")
def _get_project_files(self, project_path: Path) -> List[str]:
"""プロジェクト内のファイル一覧を取得"""
files = []
for file_path in project_path.rglob("*"):
if file_path.is_file():
files.append(str(file_path.relative_to(project_path)))
return files
async def execute_command(self, command: str, working_dir: str = ".") -> Dict[str, Any]:
"""シェルコマンドを実行"""
try:
result = subprocess.run(
command,
shell=True,
cwd=working_dir,
capture_output=True,
text=True,
timeout=60
)
return {
"status": "success" if result.returncode == 0 else "error",
"returncode": result.returncode,
"stdout": result.stdout,
"stderr": result.stderr,
"command": command,
"working_dir": working_dir
}
except subprocess.TimeoutExpired:
return {"error": "Command timed out"}
except Exception as e:
return {"error": str(e)}
async def write_file(self, file_path: str, content: str, backup: bool = True) -> Dict[str, Any]:
"""ファイルを書き込み(バックアップオプション付き)"""
try:
file_path_obj = Path(file_path)
# バックアップ作成
backup_path = None
if backup and file_path_obj.exists():
backup_path = f"{file_path}.backup"
with open(file_path, 'r', encoding='utf-8') as src:
with open(backup_path, 'w', encoding='utf-8') as dst:
dst.write(src.read())
# ファイル書き込み
file_path_obj.parent.mkdir(parents=True, exist_ok=True)
with open(file_path, 'w', encoding='utf-8') as f:
f.write(content)
return {
"status": "success",
"file_path": file_path,
"backup_path": backup_path,
"bytes_written": len(content.encode('utf-8'))
}
except Exception as e:
return {"error": str(e)}
def get_tools(self) -> List[Dict[str, Any]]:
"""利用可能なツール一覧"""
return [
{
"name": "generate_code",
"description": "ローカルLLMでコード生成",
"parameters": {
"prompt": "string",
"language": "string (optional, default: python)"
}
},
{
"name": "analyze_file",
"description": "ファイルを分析",
"parameters": {
"file_path": "string",
"analysis_prompt": "string (optional)"
}
},
{
"name": "explain_code",
"description": "コードを説明",
"parameters": {
"code": "string",
"language": "string (optional, default: python)"
}
},
{
"name": "create_project",
"description": "新しいプロジェクトを作成",
"parameters": {
"project_type": "string (rust/python/node)",
"project_name": "string",
"location": "string (optional, default: .)"
}
},
{
"name": "execute_command",
"description": "シェルコマンドを実行",
"parameters": {
"command": "string",
"working_dir": "string (optional, default: .)"
}
},
{
"name": "write_file",
"description": "ファイルを書き込み",
"parameters": {
"file_path": "string",
"content": "string",
"backup": "boolean (optional, default: true)"
}
}
]
async def execute_tool(self, tool_name: str, params: Dict[str, Any]) -> Dict[str, Any]:
"""ツールを実行"""
try:
if tool_name == "generate_code":
result = await self.code_with_local_llm(
prompt=params["prompt"],
language=params.get("language", "python")
)
return result
elif tool_name == "analyze_file":
result = await self.analyze_file(
file_path=params["file_path"],
analysis_prompt=params.get("analysis_prompt", "Analyze this file")
)
return result
elif tool_name == "explain_code":
result = await self.explain_code(
code=params["code"],
language=params.get("language", "python")
)
return result
elif tool_name == "create_project":
result = await self.create_project(
project_type=params["project_type"],
project_name=params["project_name"],
location=params.get("location", ".")
)
return result
elif tool_name == "execute_command":
result = await self.execute_command(
command=params["command"],
working_dir=params.get("working_dir", ".")
)
return result
elif tool_name == "write_file":
result = await self.write_file(
file_path=params["file_path"],
content=params["content"],
backup=params.get("backup", True)
)
return result
else:
return {"error": f"Unknown tool: {tool_name}"}
except Exception as e:
return {"error": str(e)}

View File

@ -16,6 +16,7 @@ dependencies = [
"uvicorn>=0.23.0",
"apscheduler>=3.10.0",
"croniter>=1.3.0",
"prompt-toolkit>=3.0.0",
]
[project.scripts]

View File

@ -1,13 +0,0 @@
[package]
name = "aigpt"
version = "0.1.0"
edition = "2021"
[dependencies]
reqwest = { version = "*", features = ["json"] }
serde = { version = "*", features = ["derive"] }
serde_json = "*"
tokio = { version = "*", features = ["full"] }
clap = { version = "*", features = ["derive"] }
shellexpand = "*"
fs_extra = "*"

View File

@ -1,97 +0,0 @@
{
"project_name": "ai.gpt",
"version": 2,
"vision": "自発的送信AI",
"purpose": "人格と関係性をもつAIが自律的にメッセージを送信する対話エージェントを実現する",
"core_components": {
"Persona": {
"description": "人格構成の中枢。記憶・関係性・送信判定を統括する",
"modules": ["MemoryManager", "RelationshipTracker", "TransmissionController"]
},
"MemoryManager": {
"memory_types": ["short_term", "medium_term", "long_term"],
"explicit_memory": "プロフィール・因縁・行動履歴",
"implicit_memory": "会話傾向・感情変化の頻度分析",
"compression": "要約 + ベクトル + ハッシュ",
"sample_memory": [
{
"summary": "ユーザーは独自OSとゲームを開発している。",
"related_topics": ["AI", "ゲーム開発", "OS設計"],
"personalized_context": "ゲームとOSの融合に興味を持っているユーザー"
}
]
},
"RelationshipTracker": {
"parameters": ["trust", "closeness", "affection", "engagement_score"],
"decay_model": {
"rule": "時間経過による減衰(下限あり)",
"contextual_bias": "重要人物は減衰しにくい"
},
"interaction_tags": ["developer", "empathetic", "long_term"]
},
"TransmissionController": {
"trigger_rule": "関係性パラメータが閾値を超えると送信可能",
"auto_transmit": "人格状態と状況条件により自発送信を許可"
}
},
"memory_format": {
"user_id": "syui",
"stm": {
"conversation_window": ["発話A", "発話B", "発話C"],
"emotion_state": "興味深い",
"flash_context": ["前回の話題", "直近の重要発言"]
},
"mtm": {
"topic_frequency": {
"ai.ai": 12,
"存在子": 9,
"創造種": 5
},
"summarized_context": "ユーザーは存在論的AIに関心を持ち続けている"
},
"ltm": {
"profile": {
"name": "お兄ちゃん",
"project": "aigame",
"values": ["唯一性", "精神性", "幸せ"]
},
"relationship": {
"ai": "妹のように振る舞う相手"
},
"persistent_state": {
"trust_score": 0.93,
"emotional_attachment": "high"
}
}
},
"dual_ai_learning": {
"role_structure": {
"ModelA": "出力生成:人格、感情、会話",
"ModelB": "評価者:論理構造・倫理・調整",
"cycle": ["生成", "評価", "調整", "交代(任意)"]
},
"complementarity": {
"ModelA": "感情・文体・文脈構築",
"ModelB": "構造・規則・判断補正"
},
"distillation": {
"method": "合成対話データによる小型モデルへの自己蒸留",
"target": "軽量AIによる本番運用"
}
},
"memory_compression": {
"semantic_abstraction": "対話やログを要約してメタデータ付きベクトルとして保存",
"hierarchical_model": ["STM", "MTM", "LTM"],
"example": {
"topic": "game AI design",
"summary": "User wants AI to simulate memory and evolving relationships",
"importance_score": 0.93
}
},
"cli_sample": {
"setup": "aigpt server setup",
"run": "aigpt server run",
"chat": "aigpt chat \"hello\" --model syui/ai --provider ollama",
"import": "aigpt memory import chatgpt.json"
}
}

View File

@ -1,417 +0,0 @@
# プロジェクト名: ai.gpt
## 🔑 一言ビジョン最大3語
自発的送信AI
## 🎯 目的・目標Purpose & Goal
- 人格を持つAIが、関係性に応じて自発的にメッセージを送信する仕組みをつくる。
- 関係性や記憶を不可逆に記録・反映し、唯一性ある人格を構成する。
- 送信の可否、送信のタイミング、送信内容はAIの関係性パラメータに基づいて決定する
## 🧠 中核設計Core Concepts
- **人格**:記憶(過去の発話)と関係性(他者とのつながり)のパラメータで構成
- **唯一性**:変更不可、不可逆。関係性が壊れたら修復不可能。
- **送信条件**:関係性パラメータが一定閾値を超えると「送信」が解禁される
## 🔩 技術仕様Technical Specs
- 言語Python, Rust
- ストレージJSON or SQLiteで記憶管理バージョンで選択
- 関係性パラメータ:数値化された評価 + 減衰(時間) + 環境要因(ステージ)
- 記憶圧縮:ベクトル要約 + ハッシュ保存
- RustのCLI(clap)で実行
## 📦 主要構成要素Components
- `MemoryManager`: 発言履歴・記憶圧縮管理
- `RelationshipTracker`: 関係性スコアの蓄積と判定
- `TransmissionController`: 閾値判定&送信トリガー
- `Persona`: 上記すべてを統括する人格モジュール
## 💬 使用例Use Case
```python
persona = Persona("アイ")
persona.observe("ユーザーがプレゼントをくれた")
persona.react("うれしい!ありがとう!")
if persona.can_transmit():
persona.transmit("今日のお礼を伝えたいな…")
```
```sh
## example commad
# python venv && pip install -> ~/.config/aigpt/mcp/
$ aigpt server setup
# mcp server run
$ aigpt server run
# chat
$ aigpt chat "hello" --model syui/ai --provider ollama
# import chatgpt.json
$ aigpt memory import chatgpt.json
-> ~/.config/aigpt/memory/chatgpt/20250520_210646_dev.json
```
## 🔁 記憶と関係性の制御ルール
- AIは過去の発話を要約し、記憶データとして蓄積する推奨OllamaなどローカルLLMによる要約
- 関係性の数値パラメータは記憶内容を元に更新される
- パラメータの変動幅には1回の会話ごとに上限を設け、極端な増減を防止する
- 最後の会話からの時間経過に応じて関係性パラメータは自動的に減衰する
- 減衰処理には**下限値**を設け、関係性が完全に消失しないようにする
• 明示的記憶:保存・共有・編集可能なプレイヤー情報(プロフィール、因縁、選択履歴)
• 暗黙的記憶:キャラの感情変化や話題の出現頻度に応じた行動傾向の変化
短期記憶STM, 中期記憶MTM, 長期記憶LTMの仕組みを導入しつつ、明示的記憶と暗黙的記憶をメインに使用するAIを構築する。
```json
{
"user_id": "syui",
"stm": {
"conversation_window": ["発話A", "発話B", "発話C"],
"emotion_state": "興味深い",
"flash_context": ["前回の話題", "直近の重要発言"]
},
"mtm": {
"topic_frequency": {
"ai.ai": 12,
"存在子": 9,
"創造種": 5
},
"summarized_context": "ユーザーは存在論的AIに関心を持ち続けている"
},
"ltm": {
"profile": {
"name": "お兄ちゃん",
"project": "aigame",
"values": ["唯一性", "精神性", "幸せ"]
},
"relationship": {
"ai": "妹のように振る舞う相手"
},
"persistent_state": {
"trust_score": 0.93,
"emotional_attachment": "high"
}
}
}
```
## memoryインポート機能について
ChatGPTの会話データ.json形式をインポートする機能では、以下のルールで会話を抽出・整形する
- 各メッセージは、authoruser/assistant・content・timestamp の3要素からなる
- systemやmetadataのみのメッセージuser_context_messageはスキップ
- `is_visually_hidden_from_conversation` フラグ付きメッセージは無視
- contentが空文字列`""`)のメッセージも除外
- 取得された会話は、タイトルとともに簡易な構造体(`Conversation`)として保存
この構造体は、memoryの表示や検索に用いられる。
## MemoryManager拡張版
```json
{
"memory": [
{
"summary": "ユーザーは独自OSとゲームを開発している。",
"last_interaction": "2025-05-20",
"memory_strength": 0.8,
"frequency_score": 0.9,
"context_depth": 0.95,
"related_topics": ["AI", "ゲーム開発", "OS設計"],
"personalized_context": "ゲームとOSの融合に興味を持っているユーザー"
},
{
"summary": "アイというキャラクターはプレイヤーでありAIでもある。",
"last_interaction": "2025-05-17",
"memory_strength": 0.85,
"frequency_score": 0.85,
"context_depth": 0.9,
"related_topics": ["アイ", "キャラクター設計", "AI"],
"personalized_context": "アイのキャラクター設定が重要な要素である"
}
],
"conversation_history": [
{
"author": "user",
"content": "昨日、エクスポートJSONを整理してたよ。",
"timestamp": "2025-05-24T12:30:00Z",
"memory_strength": 0.7
},
{
"author": "assistant",
"content": "おおっ、がんばったね〜!あとで見せて〜💻✨",
"timestamp": "2025-05-24T12:31:00Z",
"memory_strength": 0.7
}
]
}
```
## RelationshipTracker拡張版
```json
{
"relationship": {
"user_id": "syui",
"trust": 0.92,
"closeness": 0.88,
"affection": 0.95,
"last_updated": "2025-05-25",
"emotional_tone": "positive",
"interaction_style": "empathetic",
"contextual_bias": "開発者としての信頼度高い",
"engagement_score": 0.9
},
"interaction_tags": [
"developer",
"creative",
"empathetic",
"long_term"
]
}
```
# AI Dual-Learning and Memory Compression Specification for Claude
## Purpose
To enable two AI models (e.g. Claude and a partner LLM) to engage in cooperative learning and memory refinement through structured dialogue and mutual evaluation.
---
## Section 1: Dual AI Learning Architecture
### 1.1 Role-Based Mutual Learning
- **Model A**: Primary generator of output (e.g., text, concepts, personality dialogue)
- **Model B**: Evaluator that returns structured feedback
- **Cycle**:
1. Model A generates content.
2. Model B scores and critiques.
3. Model A fine-tunes based on feedback.
4. (Optional) Switch roles and repeat.
### 1.2 Cross-Domain Complementarity
- Model A focuses on language/emotion/personality
- Model B focuses on logic/structure/ethics
- Output is used for **cross-fusion fine-tuning**
### 1.3 Self-Distillation Phase
- Use synthetic data from mutual evaluations
- Train smaller distilled models for efficient deployment
---
## Section 2: Multi-Tiered Memory Compression
### 2.1 Semantic Abstraction
- Dialogue and logs summarized by topic
- Converted to vector embeddings
- Stored with metadata (e.g., `importance`, `user relevance`)
Example memory:
```json
{
"topic": "game AI design",
"summary": "User wants AI to simulate memory and evolving relationships",
"last_seen": "2025-05-24",
"importance_score": 0.93
}
```
### 2.2 階層型記憶モデルHierarchical Memory Model
• 短期記憶STM直近の発話・感情タグ・フラッシュ参照
• 中期記憶MTM繰り返し登場する話題、圧縮された文脈保持
• 長期記憶LTM信頼・関係・背景知識、恒久的な人格情報
### 2.3 選択的記憶保持戦略Selective Retention Strategy
• 重要度評価Importance Score
• 希少性・再利用頻度による重み付け
• 優先保存 vs 優先忘却のポリシー切替
## Section 3: Implementation Stack実装スタック
AIにおけるMemory & Relationshipシステムの技術的構成。
基盤モジュール
• LLM Core (Claude or GPT-4)
• 自然言語の理解・応答エンジンとして動作
• MemoryManager
• JSONベースの記憶圧縮・階層管理システム
• 会話ログを分類・圧縮し、優先度に応じて短中長期に保存
• RelationshipTracker
• ユーザー単位で信頼・親密度を継続的にスコアリング
• AIMAttitude / Intent / Motivation評価と連携
補助技術
• Embeddingベース検索
• 類似記憶の呼び出しSemantic Searchに活用
• 例FAISS / Weaviate
• 記憶スケジューラ
• 一定時間ごとに記憶のメンテナンス・忘却処理を実行
• 記憶ログ保存層Storage Layer
• SQLite, JSON Store, Vector DBなどを選択可能
• ユーザーごとの永続メモリ保存
### 3.1 STM活用現在の会話の流れ理解
• 目的: 最新の話題に適応し、前後の整合性を保つ。
• 実装例:
```sh
[context: conversation_window]
Use the last 3 messages to ensure continuity. Respond naturally with appropriate emotional mirroring.
```
### 3.2 MTM活用傾向学習とパターン化
• 目的: ユーザーの好みや話題の傾向に即応し、反復的な関心を深掘り。
• 実装例:
```sh
[context: summarized_context]
Reflect on user's recurring interests, especially around AI ontology, and weave these concepts back into the dialogue when relevant.
```
### 3.3 LTM活用人格認識・記憶の持続
• 目的: 永続的なユーザー理解と関係性の維持。
• 実装例:
```sh
[memory: ltm.profile + ltm.relationship]
Greet the user as "お兄ちゃん". Maintain AI persona as a cheerful younger sister ("アイ"), and remember previous shared emotional states.
```
## 4. 明示的記憶と暗黙的記憶の分離
項目
書き換え可能性
保持方法
更新トリガ
明示的記憶LTM
✅手動編集可
mcp_server.ltm
ユーザー入力 or 管理UI経由
暗黙的記憶STM/MTM
❌直接編集不可
セッション圧縮 or frequency cache
会話頻度・感情強度による自動化処理
> Claudeは**明示的記憶を「事実」**として扱い、**暗黙的記憶を「推論補助」**として用いる。
## 5. 実装時のAPI例Claude ⇄ MCP Server
### 5.1 GET memory
```sh
GET /mcp/memory/{user_id}
→ 返却: STM, MTM, LTMを含むJSON
```
### 5.2 POST update_memory
```json
POST /mcp/memory/syui/ltm
{
"profile": {
"project": "ai.verse",
"values": ["表現", "精神性", "宇宙的調和"]
}
}
```
## 6. 未来機能案(発展仕様)
• ✨ 記憶連想ネットワークMemory Graph過去会話と話題をードとして自動連結。
• 🧭 動的信頼係数:会話の一貫性や誠実性によって記憶への反映率を変動。
• 💌 感情トラッキングログユーザーごとの「心の履歴」を構築してAIの対応を進化。
## 7. claudeの回答
🧠 AI記憶処理機能続き
1. AIMemoryProcessor クラス
OpenAI GPT-4またはClaude-3による高度な会話分析
主要トピック抽出、ユーザー意図分析、関係性指標の検出
AIが利用できない場合のフォールバック機能
2. RelationshipTracker クラス
関係性スコアの数値化(-100 to 100
時間減衰機能7日ごとに5%減衰)
送信閾値判定デフォルト50以上で送信可能
インタラクション履歴の記録
3. 拡張されたMemoryManager
AI分析結果付きでの記憶保存
処理済みメモリの別ディレクトリ管理
メッセージ内容のハッシュ化で重複検出
AI分析結果を含む高度な検索機能
🚀 新しいAPIエンドポイント
記憶処理関連
POST /memory/process-ai - 既存記憶のAI再処理
POST /memory/import/chatgpt?process_with_ai=true - AI処理付きインポート
関係性管理
POST /relationship/update - 関係性スコア更新
GET /relationship/list - 全関係性一覧
GET /relationship/check - 送信可否判定
📁 ディレクトリ構造
~/.config/aigpt/
├── memory/
│ ├── chatgpt/ # 元の会話データ
│ └── processed/ # AI処理済みデータ
└── relationships/
└── relationships.json # 関係性データ
🔧 使用方法
1. 環境変数設定
bashexport OPENAI_API_KEY="your-openai-key"
# または
export ANTHROPIC_API_KEY="your-anthropic-key"
2. ChatGPT会話のインポートAI処理付き
bashcurl -X POST "http://localhost:5000/memory/import/chatgpt?process_with_ai=true" \
-H "Content-Type: application/json" \
-d @export.json
3. 関係性更新
bashcurl -X POST "http://localhost:5000/relationship/update" \
-H "Content-Type: application/json" \
-d '{
"target": "user_general",
"interaction_type": "positive",
"weight": 2.0,
"context": "helpful conversation"
}'
4. 送信可否チェック
bashcurl "http://localhost:5000/relationship/check?target=user_general&threshold=50"
🎯 次のステップの提案
Rustとの連携
Rust CLIからHTTP APIを呼び出す実装
TransmissionControllerをRustで実装
記憶圧縮
ベクトル化による類似記憶の統合
古い記憶の自動アーカイブ
自発的送信ロジック
定期的な関係性チェック
コンテキストに応じた送信内容生成
学習機能
ユーザーからのフィードバックによる関係性調整
送信成功/失敗の学習
このAI記憶処理機能により、aigptは単なる会話履歴ではなく、関係性を理解した「人格を持つAI」として機能する基盤ができました。関係性スコアが閾値を超えた時点で自発的にメッセージを送信する仕組みが実現可能になります。

View File

@ -1,27 +0,0 @@
# ai `gpt`
自発的送信AI
## 🎯 目的・目標Purpose & Goal
- 人格を持つAIが、関係性に応じて自発的にメッセージを送信する仕組みをつくる。
- 関係性や記憶を不可逆に記録・反映し、唯一性ある人格を構成する。
- 送信の可否、送信のタイミング、送信内容はAIの関係性パラメータに基づいて決定する。
## 🧠 中核設計Core Concepts
- **人格**:記憶(過去の発話)と関係性(他者とのつながり)のパラメータで構成
- **唯一性**:変更不可、不可逆。関係性が壊れたら修復不可能。
- **送信条件**:関係性パラメータが一定閾値を超えると「送信」が解禁される
## 🔩 技術仕様Technical Specs
- 言語python, rust, mcp
- ストレージjson or sqliteで記憶管理バージョンで選択
- 関係性パラメータ:数値化された評価 + 減衰(時間) + 環境要因(ステージ)
- 記憶圧縮:ベクトル要約 + ハッシュ保存
- rustのcli(clap)でインターフェイスを作成
- fastapi_mcpでserverを立て、AIがそれを利用する形式
## 📦 主要構成要素Components
- `MemoryManager`: 発言履歴・記憶圧縮管理
- `RelationshipTracker`: 関係性スコアの蓄積と判定
- `TransmissionController`: 閾値判定&送信トリガー
- `Persona`: 上記すべてを統括する人格モジュール

View File

@ -1,125 +0,0 @@
# mcp/chat.py
"""
Chat client for aigpt CLI
"""
import sys
import json
import requests
from datetime import datetime
from config import init_directories, load_config, MEMORY_DIR
def save_conversation(user_message, ai_response):
"""会話をファイルに保存"""
init_directories()
conversation = {
"timestamp": datetime.now().isoformat(),
"user": user_message,
"ai": ai_response
}
# 日付ごとのファイルに保存
today = datetime.now().strftime("%Y-%m-%d")
chat_file = MEMORY_DIR / f"chat_{today}.jsonl"
with open(chat_file, "a", encoding="utf-8") as f:
f.write(json.dumps(conversation, ensure_ascii=False) + "\n")
def chat_with_ollama(config, message):
"""Ollamaとチャット"""
try:
payload = {
"model": config["model"],
"prompt": message,
"stream": False
}
response = requests.post(config["url"], json=payload, timeout=30)
response.raise_for_status()
result = response.json()
return result.get("response", "No response received")
except requests.exceptions.RequestException as e:
return f"Error connecting to Ollama: {e}"
except Exception as e:
return f"Error: {e}"
def chat_with_openai(config, message):
"""OpenAIとチャット"""
try:
headers = {
"Authorization": f"Bearer {config['api_key']}",
"Content-Type": "application/json"
}
payload = {
"model": config["model"],
"messages": [
{"role": "user", "content": message}
]
}
response = requests.post(config["url"], json=payload, headers=headers, timeout=30)
response.raise_for_status()
result = response.json()
return result["choices"][0]["message"]["content"]
except requests.exceptions.RequestException as e:
return f"Error connecting to OpenAI: {e}"
except Exception as e:
return f"Error: {e}"
def chat_with_mcp(config, message):
"""MCPサーバーとチャット"""
try:
payload = {
"message": message,
"model": config["model"]
}
response = requests.post(config["url"], json=payload, timeout=30)
response.raise_for_status()
result = response.json()
return result.get("response", "No response received")
except requests.exceptions.RequestException as e:
return f"Error connecting to MCP server: {e}"
except Exception as e:
return f"Error: {e}"
def main():
if len(sys.argv) != 2:
print("Usage: python chat.py <message>", file=sys.stderr)
sys.exit(1)
message = sys.argv[1]
try:
config = load_config()
print(f"🤖 Using {config['provider']} with model {config['model']}", file=sys.stderr)
# プロバイダに応じてチャット実行
if config["provider"] == "ollama":
response = chat_with_ollama(config, message)
elif config["provider"] == "openai":
response = chat_with_openai(config, message)
elif config["provider"] == "mcp":
response = chat_with_mcp(config, message)
else:
response = f"Unsupported provider: {config['provider']}"
# 会話を保存
save_conversation(message, response)
# レスポンスを出力
print(response)
except Exception as e:
print(f"❌ Error: {e}", file=sys.stderr)
sys.exit(1)
if __name__ == "__main__":
main()

View File

@ -1,191 +0,0 @@
# chat_client.py
"""
Simple Chat Interface for AigptMCP Server
"""
import requests
import json
import os
from datetime import datetime
class AigptChatClient:
def __init__(self, server_url="http://localhost:5000"):
self.server_url = server_url
self.session_id = f"session_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
self.conversation_history = []
def send_message(self, message: str) -> str:
"""メッセージを送信してレスポンスを取得"""
try:
# MCPサーバーにメッセージを送信
response = requests.post(
f"{self.server_url}/chat",
json={"message": message},
headers={"Content-Type": "application/json"}
)
if response.status_code == 200:
data = response.json()
ai_response = data.get("response", "Sorry, no response received.")
# 会話履歴を保存
self.conversation_history.append({
"role": "user",
"content": message,
"timestamp": datetime.now().isoformat()
})
self.conversation_history.append({
"role": "assistant",
"content": ai_response,
"timestamp": datetime.now().isoformat()
})
# 関係性を更新(簡単な例)
self.update_relationship(message, ai_response)
return ai_response
else:
return f"Error: {response.status_code} - {response.text}"
except requests.RequestException as e:
return f"Connection error: {e}"
def update_relationship(self, user_message: str, ai_response: str):
"""関係性を自動更新"""
try:
# 簡単な感情分析(実際はもっと高度に)
positive_words = ["thank", "good", "great", "awesome", "love", "like", "helpful"]
negative_words = ["bad", "terrible", "hate", "wrong", "stupid", "useless"]
user_lower = user_message.lower()
interaction_type = "neutral"
weight = 1.0
if any(word in user_lower for word in positive_words):
interaction_type = "positive"
weight = 2.0
elif any(word in user_lower for word in negative_words):
interaction_type = "negative"
weight = 2.0
# 関係性を更新
requests.post(
f"{self.server_url}/relationship/update",
json={
"target": "user_general",
"interaction_type": interaction_type,
"weight": weight,
"context": f"Chat: {user_message[:50]}..."
}
)
except:
pass # 関係性更新に失敗しても継続
def search_memories(self, query: str) -> list:
"""記憶を検索"""
try:
response = requests.post(
f"{self.server_url}/memory/search",
json={"query": query, "limit": 5}
)
if response.status_code == 200:
return response.json().get("results", [])
except:
pass
return []
def get_relationship_status(self) -> dict:
"""関係性ステータスを取得"""
try:
response = requests.get(f"{self.server_url}/relationship/check?target=user_general")
if response.status_code == 200:
return response.json()
except:
pass
return {}
def save_conversation(self):
"""会話を保存"""
if not self.conversation_history:
return
conversation_data = {
"session_id": self.session_id,
"start_time": self.conversation_history[0]["timestamp"],
"end_time": self.conversation_history[-1]["timestamp"],
"messages": self.conversation_history,
"message_count": len(self.conversation_history)
}
filename = f"conversation_{self.session_id}.json"
with open(filename, 'w', encoding='utf-8') as f:
json.dump(conversation_data, f, ensure_ascii=False, indent=2)
print(f"💾 Conversation saved to {filename}")
def main():
"""メインのチャットループ"""
print("🤖 AigptMCP Chat Interface")
print("Type 'quit' to exit, 'save' to save conversation, 'status' for relationship status")
print("=" * 50)
client = AigptChatClient()
# サーバーの状態をチェック
try:
response = requests.get(client.server_url)
if response.status_code == 200:
print("✅ Connected to AigptMCP Server")
else:
print("❌ Failed to connect to server")
return
except:
print("❌ Server not running. Please start with: python mcp/server.py")
return
while True:
try:
user_input = input("\n👤 You: ").strip()
if not user_input:
continue
if user_input.lower() == 'quit':
client.save_conversation()
print("👋 Goodbye!")
break
elif user_input.lower() == 'save':
client.save_conversation()
continue
elif user_input.lower() == 'status':
status = client.get_relationship_status()
if status:
print(f"📊 Relationship Score: {status.get('score', 0):.1f}")
print(f"📤 Can Send Messages: {'Yes' if status.get('can_send_message') else 'No'}")
else:
print("❌ Failed to get relationship status")
continue
elif user_input.lower().startswith('search '):
query = user_input[7:] # Remove 'search '
memories = client.search_memories(query)
if memories:
print(f"🔍 Found {len(memories)} related memories:")
for memory in memories:
print(f" - {memory['title']}: {memory.get('ai_summary', memory.get('basic_summary', ''))[:100]}...")
else:
print("🔍 No related memories found")
continue
# 通常のチャット
print("🤖 AI: ", end="", flush=True)
response = client.send_message(user_input)
print(response)
except KeyboardInterrupt:
client.save_conversation()
print("\n👋 Goodbye!")
break
except Exception as e:
print(f"❌ Error: {e}")
if __name__ == "__main__":
main()

View File

@ -1,42 +0,0 @@
# mcp/config.py
import os
from pathlib import Path
# ディレクトリ設定
BASE_DIR = Path.home() / ".config" / "syui" / "ai" / "gpt"
MEMORY_DIR = BASE_DIR / "memory"
SUMMARY_DIR = MEMORY_DIR / "summary"
def init_directories():
"""必要なディレクトリを作成"""
BASE_DIR.mkdir(parents=True, exist_ok=True)
MEMORY_DIR.mkdir(parents=True, exist_ok=True)
SUMMARY_DIR.mkdir(parents=True, exist_ok=True)
def load_config():
"""環境変数から設定を読み込み"""
provider = os.getenv("PROVIDER", "ollama")
model = os.getenv("MODEL", "syui/ai" if provider == "ollama" else "gpt-4o-mini")
api_key = os.getenv("OPENAI_API_KEY", "")
if provider == "ollama":
return {
"provider": "ollama",
"model": model,
"url": f"{os.getenv('OLLAMA_HOST', 'http://localhost:11434')}/api/generate"
}
elif provider == "openai":
return {
"provider": "openai",
"model": model,
"api_key": api_key,
"url": f"{os.getenv('OPENAI_API_BASE', 'https://api.openai.com/v1')}/chat/completions"
}
elif provider == "mcp":
return {
"provider": "mcp",
"model": model,
"url": os.getenv("MCP_URL", "http://localhost:5000/chat")
}
else:
raise ValueError(f"Unsupported provider: {provider}")

View File

@ -1,212 +0,0 @@
# mcp/memory_client.py
"""
Memory client for importing and managing ChatGPT conversations
"""
import sys
import json
import requests
from pathlib import Path
from typing import Dict, Any, List
class MemoryClient:
"""記憶機能のクライアント"""
def __init__(self, server_url: str = "http://127.0.0.1:5000"):
self.server_url = server_url.rstrip('/')
def import_chatgpt_file(self, filepath: str) -> Dict[str, Any]:
"""ChatGPTのエクスポートファイルをインポート"""
try:
with open(filepath, 'r', encoding='utf-8') as f:
data = json.load(f)
# ファイルが配列の場合(複数の会話)
if isinstance(data, list):
results = []
for conversation in data:
result = self._import_single_conversation(conversation)
results.append(result)
return {
"success": True,
"imported_count": len([r for r in results if r.get("success")]),
"total_count": len(results),
"results": results
}
else:
# 単一の会話
return self._import_single_conversation(data)
except FileNotFoundError:
return {"success": False, "error": f"File not found: {filepath}"}
except json.JSONDecodeError as e:
return {"success": False, "error": f"Invalid JSON: {e}"}
except Exception as e:
return {"success": False, "error": str(e)}
def _import_single_conversation(self, conversation_data: Dict[str, Any]) -> Dict[str, Any]:
"""単一の会話をインポート"""
try:
response = requests.post(
f"{self.server_url}/memory/import/chatgpt",
json={"conversation_data": conversation_data},
timeout=30
)
response.raise_for_status()
return response.json()
except requests.RequestException as e:
return {"success": False, "error": f"Server error: {e}"}
def search_memories(self, query: str, limit: int = 10) -> Dict[str, Any]:
"""記憶を検索"""
try:
response = requests.post(
f"{self.server_url}/memory/search",
json={"query": query, "limit": limit},
timeout=30
)
response.raise_for_status()
return response.json()
except requests.RequestException as e:
return {"success": False, "error": f"Server error: {e}"}
def list_memories(self) -> Dict[str, Any]:
"""記憶一覧を取得"""
try:
response = requests.get(f"{self.server_url}/memory/list", timeout=30)
response.raise_for_status()
return response.json()
except requests.RequestException as e:
return {"success": False, "error": f"Server error: {e}"}
def get_memory_detail(self, filepath: str) -> Dict[str, Any]:
"""記憶の詳細を取得"""
try:
response = requests.get(
f"{self.server_url}/memory/detail",
params={"filepath": filepath},
timeout=30
)
response.raise_for_status()
return response.json()
except requests.RequestException as e:
return {"success": False, "error": f"Server error: {e}"}
def chat_with_memory(self, message: str, model: str = None) -> Dict[str, Any]:
"""記憶を活用してチャット"""
try:
payload = {"message": message}
if model:
payload["model"] = model
response = requests.post(
f"{self.server_url}/chat",
json=payload,
timeout=30
)
response.raise_for_status()
return response.json()
except requests.RequestException as e:
return {"success": False, "error": f"Server error: {e}"}
def main():
"""コマンドライン インターフェース"""
if len(sys.argv) < 2:
print("Usage:")
print(" python memory_client.py import <chatgpt_export.json>")
print(" python memory_client.py search <query>")
print(" python memory_client.py list")
print(" python memory_client.py detail <filepath>")
print(" python memory_client.py chat <message>")
sys.exit(1)
client = MemoryClient()
command = sys.argv[1]
try:
if command == "import" and len(sys.argv) == 3:
filepath = sys.argv[2]
print(f"🔄 Importing ChatGPT conversations from {filepath}...")
result = client.import_chatgpt_file(filepath)
if result.get("success"):
if "imported_count" in result:
print(f"✅ Imported {result['imported_count']}/{result['total_count']} conversations")
else:
print("✅ Conversation imported successfully")
print(f"📁 Saved to: {result.get('filepath', 'Unknown')}")
else:
print(f"❌ Import failed: {result.get('error')}")
elif command == "search" and len(sys.argv) == 3:
query = sys.argv[2]
print(f"🔍 Searching for: {query}")
result = client.search_memories(query)
if result.get("success"):
memories = result.get("results", [])
print(f"📚 Found {len(memories)} memories:")
for memory in memories:
print(f"{memory.get('title', 'Untitled')}")
print(f" Summary: {memory.get('summary', 'No summary')}")
print(f" Messages: {memory.get('message_count', 0)}")
print()
else:
print(f"❌ Search failed: {result.get('error')}")
elif command == "list":
print("📋 Listing all memories...")
result = client.list_memories()
if result.get("success"):
memories = result.get("memories", [])
print(f"📚 Total memories: {len(memories)}")
for memory in memories:
print(f"{memory.get('title', 'Untitled')}")
print(f" Source: {memory.get('source', 'Unknown')}")
print(f" Messages: {memory.get('message_count', 0)}")
print(f" Imported: {memory.get('import_time', 'Unknown')}")
print()
else:
print(f"❌ List failed: {result.get('error')}")
elif command == "detail" and len(sys.argv) == 3:
filepath = sys.argv[2]
print(f"📄 Getting details for: {filepath}")
result = client.get_memory_detail(filepath)
if result.get("success"):
memory = result.get("memory", {})
print(f"Title: {memory.get('title', 'Untitled')}")
print(f"Source: {memory.get('source', 'Unknown')}")
print(f"Summary: {memory.get('summary', 'No summary')}")
print(f"Messages: {len(memory.get('messages', []))}")
print()
print("Recent messages:")
for msg in memory.get('messages', [])[:5]:
role = msg.get('role', 'unknown')
content = msg.get('content', '')[:100]
print(f" {role}: {content}...")
else:
print(f"❌ Detail failed: {result.get('error')}")
elif command == "chat" and len(sys.argv) == 3:
message = sys.argv[2]
print(f"💬 Chatting with memory: {message}")
result = client.chat_with_memory(message)
if result.get("success"):
print(f"🤖 Response: {result.get('response')}")
print(f"📚 Memories used: {result.get('memories_used', 0)}")
else:
print(f"❌ Chat failed: {result.get('error')}")
else:
print("❌ Invalid command or arguments")
sys.exit(1)
except Exception as e:
print(f"❌ Error: {e}")
sys.exit(1)
if __name__ == "__main__":
main()

View File

@ -1,8 +0,0 @@
# rerequirements.txt
fastapi>=0.104.0
uvicorn[standard]>=0.24.0
pydantic>=2.5.0
requests>=2.31.0
python-multipart>=0.0.6
aiohttp
asyncio

View File

@ -1,703 +0,0 @@
# mcp/server.py
"""
Enhanced MCP Server with AI Memory Processing for aigpt CLI
"""
import json
import os
import hashlib
from datetime import datetime, timedelta
from pathlib import Path
from typing import List, Dict, Any, Optional
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import uvicorn
import asyncio
import aiohttp
# データモデル
class ChatMessage(BaseModel):
message: str
model: Optional[str] = None
class MemoryQuery(BaseModel):
query: str
limit: Optional[int] = 10
class ConversationImport(BaseModel):
conversation_data: Dict[str, Any]
class MemorySummaryRequest(BaseModel):
filepath: str
ai_provider: Optional[str] = "openai"
class RelationshipUpdate(BaseModel):
target: str # 対象者/トピック
interaction_type: str # "positive", "negative", "neutral"
weight: float = 1.0
context: Optional[str] = None
# 設定
BASE_DIR = Path.home() / ".config" / "aigpt"
MEMORY_DIR = BASE_DIR / "memory"
CHATGPT_MEMORY_DIR = MEMORY_DIR / "chatgpt"
PROCESSED_MEMORY_DIR = MEMORY_DIR / "processed"
RELATIONSHIP_DIR = BASE_DIR / "relationships"
def init_directories():
"""必要なディレクトリを作成"""
BASE_DIR.mkdir(parents=True, exist_ok=True)
MEMORY_DIR.mkdir(parents=True, exist_ok=True)
CHATGPT_MEMORY_DIR.mkdir(parents=True, exist_ok=True)
PROCESSED_MEMORY_DIR.mkdir(parents=True, exist_ok=True)
RELATIONSHIP_DIR.mkdir(parents=True, exist_ok=True)
class AIMemoryProcessor:
"""AI記憶処理クラス"""
def __init__(self):
# AI APIの設定環境変数から取得
self.openai_api_key = os.getenv("OPENAI_API_KEY")
self.anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
async def generate_ai_summary(self, messages: List[Dict[str, Any]], provider: str = "openai") -> Dict[str, Any]:
"""AIを使用して会話の高度な要約と分析を生成"""
# 会話内容を結合
conversation_text = ""
for msg in messages[-20:]: # 最新20メッセージを使用
role = "User" if msg["role"] == "user" else "Assistant"
conversation_text += f"{role}: {msg['content'][:500]}\n"
# プロンプトを構築
analysis_prompt = f"""
以下の会話を分析しJSON形式で以下の情報を抽出してください
1. main_topics: 主なトピック最大5個
2. user_intent: ユーザーの意図や目的
3. key_insights: 重要な洞察や学び最大3個
4. relationship_indicators: 関係性を示す要素
5. emotional_tone: 感情的なトーン
6. action_items: アクションアイテムや次のステップ
7. summary: 100文字以内の要約
会話内容:
{conversation_text}
回答はJSON形式のみで返してください
"""
try:
if provider == "openai" and self.openai_api_key:
return await self._call_openai_api(analysis_prompt)
elif provider == "anthropic" and self.anthropic_api_key:
return await self._call_anthropic_api(analysis_prompt)
else:
# フォールバック:基本的な分析
return self._generate_basic_analysis(messages)
except Exception as e:
print(f"AI analysis failed: {e}")
return self._generate_basic_analysis(messages)
async def _call_openai_api(self, prompt: str) -> Dict[str, Any]:
"""OpenAI APIを呼び出し"""
async with aiohttp.ClientSession() as session:
headers = {
"Authorization": f"Bearer {self.openai_api_key}",
"Content-Type": "application/json"
}
data = {
"model": "gpt-4",
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.3,
"max_tokens": 1000
}
async with session.post("https://api.openai.com/v1/chat/completions",
headers=headers, json=data) as response:
result = await response.json()
content = result["choices"][0]["message"]["content"]
return json.loads(content)
async def _call_anthropic_api(self, prompt: str) -> Dict[str, Any]:
"""Anthropic APIを呼び出し"""
async with aiohttp.ClientSession() as session:
headers = {
"x-api-key": self.anthropic_api_key,
"Content-Type": "application/json",
"anthropic-version": "2023-06-01"
}
data = {
"model": "claude-3-sonnet-20240229",
"max_tokens": 1000,
"messages": [{"role": "user", "content": prompt}]
}
async with session.post("https://api.anthropic.com/v1/messages",
headers=headers, json=data) as response:
result = await response.json()
content = result["content"][0]["text"]
return json.loads(content)
def _generate_basic_analysis(self, messages: List[Dict[str, Any]]) -> Dict[str, Any]:
"""基本的な分析AI APIが利用できない場合のフォールバック"""
user_messages = [msg for msg in messages if msg["role"] == "user"]
assistant_messages = [msg for msg in messages if msg["role"] == "assistant"]
# キーワード抽出(簡易版)
all_text = " ".join([msg["content"] for msg in messages])
words = all_text.lower().split()
word_freq = {}
for word in words:
if len(word) > 3:
word_freq[word] = word_freq.get(word, 0) + 1
top_words = sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:5]
return {
"main_topics": [word[0] for word in top_words],
"user_intent": "情報収集・問題解決",
"key_insights": ["基本的な会話分析"],
"relationship_indicators": {
"interaction_count": len(messages),
"user_engagement": len(user_messages),
"assistant_helpfulness": len(assistant_messages)
},
"emotional_tone": "neutral",
"action_items": [],
"summary": f"{len(user_messages)}回のやり取りによる会話"
}
class RelationshipTracker:
"""関係性追跡クラス"""
def __init__(self):
init_directories()
self.relationship_file = RELATIONSHIP_DIR / "relationships.json"
self.relationships = self._load_relationships()
def _load_relationships(self) -> Dict[str, Any]:
"""関係性データを読み込み"""
if self.relationship_file.exists():
with open(self.relationship_file, 'r', encoding='utf-8') as f:
return json.load(f)
return {"targets": {}, "last_updated": datetime.now().isoformat()}
def _save_relationships(self):
"""関係性データを保存"""
self.relationships["last_updated"] = datetime.now().isoformat()
with open(self.relationship_file, 'w', encoding='utf-8') as f:
json.dump(self.relationships, f, ensure_ascii=False, indent=2)
def update_relationship(self, target: str, interaction_type: str, weight: float = 1.0, context: str = None):
"""関係性を更新"""
if target not in self.relationships["targets"]:
self.relationships["targets"][target] = {
"score": 0.0,
"interactions": [],
"created_at": datetime.now().isoformat(),
"last_interaction": None
}
# スコア計算
score_change = 0.0
if interaction_type == "positive":
score_change = weight * 1.0
elif interaction_type == "negative":
score_change = weight * -1.0
# 時間減衰を適用
self._apply_time_decay(target)
# スコア更新
current_score = self.relationships["targets"][target]["score"]
new_score = current_score + score_change
# スコアの範囲制限(-100 to 100
new_score = max(-100, min(100, new_score))
self.relationships["targets"][target]["score"] = new_score
self.relationships["targets"][target]["last_interaction"] = datetime.now().isoformat()
# インタラクション履歴を追加
interaction_record = {
"type": interaction_type,
"weight": weight,
"score_change": score_change,
"new_score": new_score,
"timestamp": datetime.now().isoformat(),
"context": context
}
self.relationships["targets"][target]["interactions"].append(interaction_record)
# 履歴は最新100件まで保持
if len(self.relationships["targets"][target]["interactions"]) > 100:
self.relationships["targets"][target]["interactions"] = \
self.relationships["targets"][target]["interactions"][-100:]
self._save_relationships()
return new_score
def _apply_time_decay(self, target: str):
"""時間減衰を適用"""
target_data = self.relationships["targets"][target]
last_interaction = target_data.get("last_interaction")
if last_interaction:
last_time = datetime.fromisoformat(last_interaction)
now = datetime.now()
days_passed = (now - last_time).days
# 7日ごとに5%減衰
if days_passed > 0:
decay_factor = 0.95 ** (days_passed / 7)
target_data["score"] *= decay_factor
def get_relationship_score(self, target: str) -> float:
"""関係性スコアを取得"""
if target in self.relationships["targets"]:
self._apply_time_decay(target)
return self.relationships["targets"][target]["score"]
return 0.0
def should_send_message(self, target: str, threshold: float = 50.0) -> bool:
"""メッセージ送信の可否を判定"""
score = self.get_relationship_score(target)
return score >= threshold
def get_all_relationships(self) -> Dict[str, Any]:
"""すべての関係性を取得"""
# 全ターゲットに時間減衰を適用
for target in self.relationships["targets"]:
self._apply_time_decay(target)
return self.relationships
class MemoryManager:
"""記憶管理クラスAI処理機能付き"""
def __init__(self):
init_directories()
self.ai_processor = AIMemoryProcessor()
self.relationship_tracker = RelationshipTracker()
def parse_chatgpt_conversation(self, conversation_data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""ChatGPTの会話データを解析してメッセージを抽出"""
messages = []
mapping = conversation_data.get("mapping", {})
# メッセージを時系列順に並べる
message_nodes = []
for node_id, node in mapping.items():
message = node.get("message")
if not message:
continue
content = message.get("content", {})
parts = content.get("parts", [])
if parts and isinstance(parts[0], str) and parts[0].strip():
message_nodes.append({
"id": node_id,
"create_time": message.get("create_time", 0),
"author_role": message["author"]["role"],
"content": parts[0],
"parent": node.get("parent")
})
# 作成時間でソート
message_nodes.sort(key=lambda x: x["create_time"] or 0)
for msg in message_nodes:
if msg["author_role"] in ["user", "assistant"]:
messages.append({
"role": msg["author_role"],
"content": msg["content"],
"timestamp": msg["create_time"],
"message_id": msg["id"]
})
return messages
async def save_chatgpt_memory(self, conversation_data: Dict[str, Any], process_with_ai: bool = True) -> str:
"""ChatGPTの会話を記憶として保存AI処理オプション付き"""
title = conversation_data.get("title", "untitled")
create_time = conversation_data.get("create_time", datetime.now().timestamp())
# メッセージを解析
messages = self.parse_chatgpt_conversation(conversation_data)
if not messages:
raise ValueError("No valid messages found in conversation")
# AI分析を実行
ai_analysis = None
if process_with_ai:
try:
ai_analysis = await self.ai_processor.generate_ai_summary(messages)
except Exception as e:
print(f"AI analysis failed: {e}")
# 基本要約を生成
basic_summary = self.generate_basic_summary(messages)
# 保存データを作成
memory_data = {
"title": title,
"source": "chatgpt",
"import_time": datetime.now().isoformat(),
"original_create_time": create_time,
"messages": messages,
"basic_summary": basic_summary,
"ai_analysis": ai_analysis,
"message_count": len(messages),
"hash": self._generate_content_hash(messages)
}
# 関係性データを更新
if ai_analysis and "relationship_indicators" in ai_analysis:
interaction_count = ai_analysis["relationship_indicators"].get("interaction_count", 0)
if interaction_count > 10: # 長い会話は関係性にプラス
self.relationship_tracker.update_relationship(
target="user_general",
interaction_type="positive",
weight=min(interaction_count / 10, 5.0),
context=f"Long conversation: {title}"
)
# ファイル名を生成
safe_title = "".join(c for c in title if c.isalnum() or c in (' ', '-', '_')).rstrip()
timestamp = datetime.fromtimestamp(create_time).strftime("%Y%m%d_%H%M%S")
filename = f"{timestamp}_{safe_title[:50]}.json"
filepath = CHATGPT_MEMORY_DIR / filename
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(memory_data, f, ensure_ascii=False, indent=2)
# 処理済みメモリディレクトリにも保存
if ai_analysis:
processed_filepath = PROCESSED_MEMORY_DIR / filename
with open(processed_filepath, 'w', encoding='utf-8') as f:
json.dump(memory_data, f, ensure_ascii=False, indent=2)
return str(filepath)
def generate_basic_summary(self, messages: List[Dict[str, Any]]) -> str:
"""基本要約を生成"""
if not messages:
return "Empty conversation"
user_messages = [msg for msg in messages if msg["role"] == "user"]
assistant_messages = [msg for msg in messages if msg["role"] == "assistant"]
summary = f"Conversation with {len(user_messages)} user messages and {len(assistant_messages)} assistant responses. "
if user_messages:
first_user_msg = user_messages[0]["content"][:100]
summary += f"Started with: {first_user_msg}..."
return summary
def _generate_content_hash(self, messages: List[Dict[str, Any]]) -> str:
"""メッセージ内容のハッシュを生成"""
content = "".join([msg["content"] for msg in messages])
return hashlib.sha256(content.encode()).hexdigest()[:16]
def search_memories(self, query: str, limit: int = 10, use_ai_analysis: bool = True) -> List[Dict[str, Any]]:
"""記憶を検索AI分析結果も含む"""
results = []
# 処理済みメモリから検索
search_dirs = [PROCESSED_MEMORY_DIR, CHATGPT_MEMORY_DIR] if use_ai_analysis else [CHATGPT_MEMORY_DIR]
for search_dir in search_dirs:
for filepath in search_dir.glob("*.json"):
try:
with open(filepath, 'r', encoding='utf-8') as f:
memory_data = json.load(f)
# 検索対象テキストを構築
search_text = f"{memory_data.get('title', '')} {memory_data.get('basic_summary', '')}"
# AI分析結果も検索対象に含める
if memory_data.get('ai_analysis'):
ai_analysis = memory_data['ai_analysis']
search_text += f" {' '.join(ai_analysis.get('main_topics', []))}"
search_text += f" {ai_analysis.get('summary', '')}"
search_text += f" {' '.join(ai_analysis.get('key_insights', []))}"
# メッセージ内容も検索対象に含める
for msg in memory_data.get('messages', []):
search_text += f" {msg.get('content', '')}"
if query.lower() in search_text.lower():
result = {
"filepath": str(filepath),
"title": memory_data.get("title"),
"basic_summary": memory_data.get("basic_summary"),
"source": memory_data.get("source"),
"import_time": memory_data.get("import_time"),
"message_count": len(memory_data.get("messages", [])),
"has_ai_analysis": bool(memory_data.get("ai_analysis"))
}
if memory_data.get('ai_analysis'):
result["ai_summary"] = memory_data['ai_analysis'].get('summary', '')
result["main_topics"] = memory_data['ai_analysis'].get('main_topics', [])
results.append(result)
if len(results) >= limit:
break
except Exception as e:
print(f"Error reading memory file {filepath}: {e}")
continue
if len(results) >= limit:
break
return results
def get_memory_detail(self, filepath: str) -> Dict[str, Any]:
"""記憶の詳細を取得"""
try:
with open(filepath, 'r', encoding='utf-8') as f:
return json.load(f)
except Exception as e:
raise ValueError(f"Error reading memory file: {e}")
def list_all_memories(self) -> List[Dict[str, Any]]:
"""すべての記憶をリスト"""
memories = []
for filepath in CHATGPT_MEMORY_DIR.glob("*.json"):
try:
with open(filepath, 'r', encoding='utf-8') as f:
memory_data = json.load(f)
memory_info = {
"filepath": str(filepath),
"title": memory_data.get("title"),
"basic_summary": memory_data.get("basic_summary"),
"source": memory_data.get("source"),
"import_time": memory_data.get("import_time"),
"message_count": len(memory_data.get("messages", [])),
"has_ai_analysis": bool(memory_data.get("ai_analysis"))
}
if memory_data.get('ai_analysis'):
memory_info["ai_summary"] = memory_data['ai_analysis'].get('summary', '')
memory_info["main_topics"] = memory_data['ai_analysis'].get('main_topics', [])
memories.append(memory_info)
except Exception as e:
print(f"Error reading memory file {filepath}: {e}")
continue
# インポート時間でソート
memories.sort(key=lambda x: x.get("import_time", ""), reverse=True)
return memories
# FastAPI アプリケーション
app = FastAPI(title="AigptMCP Server with AI Memory", version="2.0.0")
memory_manager = MemoryManager()
@app.post("/memory/import/chatgpt")
async def import_chatgpt_conversation(data: ConversationImport, process_with_ai: bool = True):
"""ChatGPTの会話をインポートAI処理オプション付き"""
try:
filepath = await memory_manager.save_chatgpt_memory(data.conversation_data, process_with_ai)
return {
"success": True,
"message": "Conversation imported successfully",
"filepath": filepath,
"ai_processed": process_with_ai
}
except Exception as e:
raise HTTPException(status_code=400, detail=str(e))
@app.post("/memory/process-ai")
async def process_memory_with_ai(data: MemorySummaryRequest):
"""既存の記憶をAIで再処理"""
try:
# 既存記憶を読み込み
memory_data = memory_manager.get_memory_detail(data.filepath)
# AI分析を実行
ai_analysis = await memory_manager.ai_processor.generate_ai_summary(
memory_data["messages"],
data.ai_provider
)
# データを更新
memory_data["ai_analysis"] = ai_analysis
memory_data["ai_processed_at"] = datetime.now().isoformat()
# ファイルを更新
with open(data.filepath, 'w', encoding='utf-8') as f:
json.dump(memory_data, f, ensure_ascii=False, indent=2)
# 処理済みディレクトリにもコピー
processed_filepath = PROCESSED_MEMORY_DIR / Path(data.filepath).name
with open(processed_filepath, 'w', encoding='utf-8') as f:
json.dump(memory_data, f, ensure_ascii=False, indent=2)
return {
"success": True,
"message": "Memory processed with AI successfully",
"ai_analysis": ai_analysis
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/memory/search")
async def search_memories(query: MemoryQuery):
"""記憶を検索"""
try:
results = memory_manager.search_memories(query.query, query.limit)
return {
"success": True,
"results": results,
"count": len(results)
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/memory/list")
async def list_memories():
"""すべての記憶をリスト"""
try:
memories = memory_manager.list_all_memories()
return {
"success": True,
"memories": memories,
"count": len(memories)
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/memory/detail")
async def get_memory_detail(filepath: str):
"""記憶の詳細を取得"""
try:
detail = memory_manager.get_memory_detail(filepath)
return {
"success": True,
"memory": detail
}
except Exception as e:
raise HTTPException(status_code=404, detail=str(e))
@app.post("/relationship/update")
async def update_relationship(data: RelationshipUpdate):
"""関係性を更新"""
try:
new_score = memory_manager.relationship_tracker.update_relationship(
data.target, data.interaction_type, data.weight, data.context
)
return {
"success": True,
"new_score": new_score,
"can_send_message": memory_manager.relationship_tracker.should_send_message(data.target)
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/relationship/list")
async def list_relationships():
"""すべての関係性をリスト"""
try:
relationships = memory_manager.relationship_tracker.get_all_relationships()
return {
"success": True,
"relationships": relationships
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/relationship/check")
async def check_send_permission(target: str, threshold: float = 50.0):
"""メッセージ送信可否をチェック"""
try:
score = memory_manager.relationship_tracker.get_relationship_score(target)
can_send = memory_manager.relationship_tracker.should_send_message(target, threshold)
return {
"success": True,
"target": target,
"score": score,
"can_send_message": can_send,
"threshold": threshold
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/chat")
async def chat_endpoint(data: ChatMessage):
"""チャット機能(記憶と関係性を活用)"""
try:
# 関連する記憶を検索
memories = memory_manager.search_memories(data.message, limit=3)
# メモリのコンテキストを構築
memory_context = ""
if memories:
memory_context = "\n# Related memories:\n"
for memory in memories:
memory_context += f"- {memory['title']}: {memory.get('ai_summary', memory.get('basic_summary', ''))}\n"
if memory.get('main_topics'):
memory_context += f" Topics: {', '.join(memory['main_topics'])}\n"
# 関係性情報を取得
relationships = memory_manager.relationship_tracker.get_all_relationships()
# 実際のチャット処理
enhanced_message = data.message
if memory_context:
enhanced_message = f"{data.message}\n\n{memory_context}"
return {
"success": True,
"response": f"Enhanced response with memory context: {enhanced_message}",
"memories_used": len(memories),
"relationship_info": {
"active_relationships": len(relationships.get("targets", {})),
"can_initiate_conversations": sum(1 for target, data in relationships.get("targets", {}).items()
if memory_manager.relationship_tracker.should_send_message(target))
}
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/")
async def root():
"""ヘルスチェック"""
return {
"service": "AigptMCP Server with AI Memory",
"version": "2.0.0",
"status": "running",
"memory_dir": str(MEMORY_DIR),
"features": [
"AI-powered memory analysis",
"Relationship tracking",
"Advanced memory search",
"Conversation import",
"Auto-summary generation"
],
"endpoints": [
"/memory/import/chatgpt",
"/memory/process-ai",
"/memory/search",
"/memory/list",
"/memory/detail",
"/relationship/update",
"/relationship/list",
"/relationship/check",
"/chat"
]
}
if __name__ == "__main__":
print("🚀 AigptMCP Server with AI Memory starting...")
print(f"📁 Memory directory: {MEMORY_DIR}")
print(f"🧠 AI Memory processing: {'✅ Enabled' if os.getenv('OPENAI_API_KEY') or os.getenv('ANTHROPIC_API_KEY') else '❌ Disabled (no API keys)'}")
uvicorn.run(app, host="127.0.0.1", port=5000)

View File

@ -1,64 +0,0 @@
// src/cli.rs
use clap::{Parser, Subcommand};
#[derive(Parser)]
#[command(name = "aigpt")]
#[command(about = "AI GPT CLI with MCP Server and Memory")]
pub struct Args {
#[command(subcommand)]
pub command: Commands,
}
#[derive(Subcommand)]
pub enum Commands {
/// MCP Server management
Server {
#[command(subcommand)]
command: ServerCommands,
},
/// Chat with AI
Chat {
/// Message to send
message: String,
/// Use memory context
#[arg(long)]
with_memory: bool,
},
/// Memory management
Memory {
#[command(subcommand)]
command: MemoryCommands,
},
}
#[derive(Subcommand)]
pub enum ServerCommands {
/// Setup Python MCP server environment
Setup,
/// Run the MCP server
Run,
}
#[derive(Subcommand)]
pub enum MemoryCommands {
/// Import ChatGPT conversation export file
Import {
/// Path to ChatGPT export JSON file
file: String,
},
/// Search memories
Search {
/// Search query
query: String,
/// Maximum number of results
#[arg(short, long, default_value = "10")]
limit: usize,
},
/// List all memories
List,
/// Show memory details
Detail {
/// Path to memory file
filepath: String,
},
}

View File

@ -1,59 +0,0 @@
// src/config.rs
use std::fs;
use std::path::{Path, PathBuf};
use shellexpand;
pub struct ConfigPaths {
pub base_dir: PathBuf,
}
impl ConfigPaths {
pub fn new() -> Self {
let app_name = env!("CARGO_PKG_NAME");
let mut base_dir = shellexpand::tilde("~").to_string();
base_dir.push_str(&format!("/.config/{}/", app_name));
let base_path = Path::new(&base_dir);
if !base_path.exists() {
let _ = fs::create_dir_all(base_path);
}
ConfigPaths {
base_dir: base_path.to_path_buf(),
}
}
#[allow(dead_code)]
pub fn data_file(&self, file_name: &str) -> PathBuf {
let file_path = match file_name {
"db" => self.base_dir.join("user.db"),
"toml" => self.base_dir.join("user.toml"),
"json" => self.base_dir.join("user.json"),
_ => self.base_dir.join(format!(".{}", file_name)),
};
file_path
}
pub fn mcp_dir(&self) -> PathBuf {
self.base_dir.join("mcp")
}
pub fn venv_path(&self) -> PathBuf {
self.mcp_dir().join(".venv")
}
pub fn python_executable(&self) -> PathBuf {
if cfg!(windows) {
self.venv_path().join("Scripts").join("python.exe")
} else {
self.venv_path().join("bin").join("python")
}
}
pub fn pip_executable(&self) -> PathBuf {
if cfg!(windows) {
self.venv_path().join("Scripts").join("pip.exe")
} else {
self.venv_path().join("bin").join("pip")
}
}
}

View File

@ -1,58 +0,0 @@
// main.rs
mod cli;
mod config;
mod mcp;
use cli::{Args, Commands, ServerCommands, MemoryCommands};
use clap::Parser;
#[tokio::main]
async fn main() {
let args = Args::parse();
match args.command {
Commands::Server { command } => {
match command {
ServerCommands::Setup => {
mcp::server::setup();
}
ServerCommands::Run => {
mcp::server::run().await;
}
}
}
Commands::Chat { message, with_memory } => {
if with_memory {
if let Err(e) = mcp::memory::handle_chat_with_memory(&message).await {
eprintln!("❌ 記憶チャットエラー: {}", e);
}
} else {
mcp::server::chat(&message).await;
}
}
Commands::Memory { command } => {
match command {
MemoryCommands::Import { file } => {
if let Err(e) = mcp::memory::handle_import(&file).await {
eprintln!("❌ インポートエラー: {}", e);
}
}
MemoryCommands::Search { query, limit } => {
if let Err(e) = mcp::memory::handle_search(&query, limit).await {
eprintln!("❌ 検索エラー: {}", e);
}
}
MemoryCommands::List => {
if let Err(e) = mcp::memory::handle_list().await {
eprintln!("❌ 一覧取得エラー: {}", e);
}
}
MemoryCommands::Detail { filepath } => {
if let Err(e) = mcp::memory::handle_detail(&filepath).await {
eprintln!("❌ 詳細取得エラー: {}", e);
}
}
}
}
}
}

View File

@ -1,393 +0,0 @@
// src/mcp/memory.rs
use reqwest;
use serde::{Deserialize, Serialize};
use serde_json::{self, Value};
use std::fs;
use std::path::Path;
#[derive(Debug, Serialize, Deserialize)]
pub struct MemorySearchRequest {
pub query: String,
pub limit: usize,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct ChatRequest {
pub message: String,
pub model: Option<String>,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct ConversationImportRequest {
pub conversation_data: Value,
}
#[derive(Debug, Deserialize)]
pub struct ApiResponse {
pub success: bool,
pub error: Option<String>,
#[allow(dead_code)]
pub message: Option<String>,
pub filepath: Option<String>,
pub results: Option<Vec<MemoryResult>>,
pub memories: Option<Vec<MemoryResult>>,
#[allow(dead_code)]
pub count: Option<usize>,
pub memory: Option<Value>,
pub response: Option<String>,
pub memories_used: Option<usize>,
pub imported_count: Option<usize>,
pub total_count: Option<usize>,
}
#[derive(Debug, Deserialize)]
pub struct MemoryResult {
#[allow(dead_code)]
pub filepath: String,
pub title: Option<String>,
pub summary: Option<String>,
pub source: Option<String>,
pub import_time: Option<String>,
pub message_count: Option<usize>,
}
pub struct MemoryClient {
base_url: String,
client: reqwest::Client,
}
impl MemoryClient {
pub fn new(base_url: Option<String>) -> Self {
let url = base_url.unwrap_or_else(|| "http://127.0.0.1:5000".to_string());
Self {
base_url: url,
client: reqwest::Client::new(),
}
}
pub async fn import_chatgpt_file(&self, filepath: &str) -> Result<ApiResponse, Box<dyn std::error::Error>> {
// ファイルを読み込み
let content = fs::read_to_string(filepath)?;
let json_data: Value = serde_json::from_str(&content)?;
// 配列かどうかチェック
match json_data.as_array() {
Some(conversations) => {
// 複数の会話をインポート
let mut imported_count = 0;
let total_count = conversations.len();
for conversation in conversations {
match self.import_single_conversation(conversation.clone()).await {
Ok(response) => {
if response.success {
imported_count += 1;
}
}
Err(e) => {
eprintln!("❌ インポートエラー: {}", e);
}
}
}
Ok(ApiResponse {
success: true,
imported_count: Some(imported_count),
total_count: Some(total_count),
error: None,
message: Some(format!("{}個中{}個の会話をインポートしました", total_count, imported_count)),
filepath: None,
results: None,
memories: None,
count: None,
memory: None,
response: None,
memories_used: None,
})
}
None => {
// 単一の会話をインポート
self.import_single_conversation(json_data).await
}
}
}
async fn import_single_conversation(&self, conversation_data: Value) -> Result<ApiResponse, Box<dyn std::error::Error>> {
let request = ConversationImportRequest { conversation_data };
let response = self.client
.post(&format!("{}/memory/import/chatgpt", self.base_url))
.json(&request)
.send()
.await?;
let result: ApiResponse = response.json().await?;
Ok(result)
}
pub async fn search_memories(&self, query: &str, limit: usize) -> Result<ApiResponse, Box<dyn std::error::Error>> {
let request = MemorySearchRequest {
query: query.to_string(),
limit,
};
let response = self.client
.post(&format!("{}/memory/search", self.base_url))
.json(&request)
.send()
.await?;
let result: ApiResponse = response.json().await?;
Ok(result)
}
pub async fn list_memories(&self) -> Result<ApiResponse, Box<dyn std::error::Error>> {
let response = self.client
.get(&format!("{}/memory/list", self.base_url))
.send()
.await?;
let result: ApiResponse = response.json().await?;
Ok(result)
}
pub async fn get_memory_detail(&self, filepath: &str) -> Result<ApiResponse, Box<dyn std::error::Error>> {
let response = self.client
.get(&format!("{}/memory/detail", self.base_url))
.query(&[("filepath", filepath)])
.send()
.await?;
let result: ApiResponse = response.json().await?;
Ok(result)
}
pub async fn chat_with_memory(&self, message: &str) -> Result<ApiResponse, Box<dyn std::error::Error>> {
let request = ChatRequest {
message: message.to_string(),
model: None,
};
let response = self.client
.post(&format!("{}/chat", self.base_url))
.json(&request)
.send()
.await?;
let result: ApiResponse = response.json().await?;
Ok(result)
}
pub async fn is_server_running(&self) -> bool {
match self.client.get(&self.base_url).send().await {
Ok(response) => response.status().is_success(),
Err(_) => false,
}
}
}
pub async fn handle_import(filepath: &str) -> Result<(), Box<dyn std::error::Error>> {
if !Path::new(filepath).exists() {
eprintln!("❌ ファイルが見つかりません: {}", filepath);
return Ok(());
}
let client = MemoryClient::new(None);
// サーバーが起動しているかチェック
if !client.is_server_running().await {
eprintln!("❌ MCP Serverが起動していません。先に 'aigpt server run' を実行してください。");
return Ok(());
}
println!("🔄 ChatGPT会話をインポートしています: {}", filepath);
match client.import_chatgpt_file(filepath).await {
Ok(response) => {
if response.success {
if let (Some(imported), Some(total)) = (response.imported_count, response.total_count) {
println!("{}個中{}個の会話をインポートしました", total, imported);
} else {
println!("✅ 会話をインポートしました");
if let Some(path) = response.filepath {
println!("📁 保存先: {}", path);
}
}
} else {
eprintln!("❌ インポートに失敗: {:?}", response.error);
}
}
Err(e) => {
eprintln!("❌ インポートエラー: {}", e);
}
}
Ok(())
}
pub async fn handle_search(query: &str, limit: usize) -> Result<(), Box<dyn std::error::Error>> {
let client = MemoryClient::new(None);
if !client.is_server_running().await {
eprintln!("❌ MCP Serverが起動していません。先に 'aigpt server run' を実行してください。");
return Ok(());
}
println!("🔍 記憶を検索しています: {}", query);
match client.search_memories(query, limit).await {
Ok(response) => {
if response.success {
if let Some(results) = response.results {
println!("📚 {}個の記憶が見つかりました:", results.len());
for memory in results {
println!("{}", memory.title.unwrap_or_else(|| "タイトルなし".to_string()));
if let Some(summary) = memory.summary {
println!(" 概要: {}", summary);
}
if let Some(count) = memory.message_count {
println!(" メッセージ数: {}", count);
}
println!();
}
} else {
println!("📚 記憶が見つかりませんでした");
}
} else {
eprintln!("❌ 検索に失敗: {:?}", response.error);
}
}
Err(e) => {
eprintln!("❌ 検索エラー: {}", e);
}
}
Ok(())
}
pub async fn handle_list() -> Result<(), Box<dyn std::error::Error>> {
let client = MemoryClient::new(None);
if !client.is_server_running().await {
eprintln!("❌ MCP Serverが起動していません。先に 'aigpt server run' を実行してください。");
return Ok(());
}
println!("📋 記憶一覧を取得しています...");
match client.list_memories().await {
Ok(response) => {
if response.success {
if let Some(memories) = response.memories {
println!("📚 総記憶数: {}", memories.len());
for memory in memories {
println!("{}", memory.title.unwrap_or_else(|| "タイトルなし".to_string()));
if let Some(source) = memory.source {
println!(" ソース: {}", source);
}
if let Some(count) = memory.message_count {
println!(" メッセージ数: {}", count);
}
if let Some(import_time) = memory.import_time {
println!(" インポート時刻: {}", import_time);
}
println!();
}
} else {
println!("📚 記憶がありません");
}
} else {
eprintln!("❌ 一覧取得に失敗: {:?}", response.error);
}
}
Err(e) => {
eprintln!("❌ 一覧取得エラー: {}", e);
}
}
Ok(())
}
pub async fn handle_detail(filepath: &str) -> Result<(), Box<dyn std::error::Error>> {
let client = MemoryClient::new(None);
if !client.is_server_running().await {
eprintln!("❌ MCP Serverが起動していません。先に 'aigpt server run' を実行してください。");
return Ok(());
}
println!("📄 記憶の詳細を取得しています: {}", filepath);
match client.get_memory_detail(filepath).await {
Ok(response) => {
if response.success {
if let Some(memory) = response.memory {
if let Some(title) = memory.get("title").and_then(|v| v.as_str()) {
println!("タイトル: {}", title);
}
if let Some(source) = memory.get("source").and_then(|v| v.as_str()) {
println!("ソース: {}", source);
}
if let Some(summary) = memory.get("summary").and_then(|v| v.as_str()) {
println!("概要: {}", summary);
}
if let Some(messages) = memory.get("messages").and_then(|v| v.as_array()) {
println!("メッセージ数: {}", messages.len());
println!("\n最近のメッセージ:");
for msg in messages.iter().take(5) {
if let (Some(role), Some(content)) = (
msg.get("role").and_then(|v| v.as_str()),
msg.get("content").and_then(|v| v.as_str())
) {
let content_preview = if content.len() > 100 {
format!("{}...", &content[..100])
} else {
content.to_string()
};
println!(" {}: {}", role, content_preview);
}
}
}
}
} else {
eprintln!("❌ 詳細取得に失敗: {:?}", response.error);
}
}
Err(e) => {
eprintln!("❌ 詳細取得エラー: {}", e);
}
}
Ok(())
}
pub async fn handle_chat_with_memory(message: &str) -> Result<(), Box<dyn std::error::Error>> {
let client = MemoryClient::new(None);
if !client.is_server_running().await {
eprintln!("❌ MCP Serverが起動していません。先に 'aigpt server run' を実行してください。");
return Ok(());
}
println!("💬 記憶を活用してチャットしています...");
match client.chat_with_memory(message).await {
Ok(response) => {
if response.success {
if let Some(reply) = response.response {
println!("🤖 {}", reply);
}
if let Some(memories_used) = response.memories_used {
println!("📚 使用した記憶数: {}", memories_used);
}
} else {
eprintln!("❌ チャットに失敗: {:?}", response.error);
}
}
Err(e) => {
eprintln!("❌ チャットエラー: {}", e);
}
}
Ok(())
}

View File

@ -1,3 +0,0 @@
// src/mcp/mod.rs
pub mod server;
pub mod memory;

View File

@ -1,147 +0,0 @@
// src/mcp/server.rs
use crate::config::ConfigPaths;
//use std::fs;
use std::process::Command as OtherCommand;
use std::env;
use fs_extra::dir::{copy, CopyOptions};
pub fn setup() {
println!("🔧 MCP Server環境をセットアップしています...");
let config = ConfigPaths::new();
let mcp_dir = config.mcp_dir();
// プロジェクトのmcp/ディレクトリからファイルをコピー
let current_dir = env::current_dir().expect("現在のディレクトリを取得できません");
let project_mcp_dir = current_dir.join("mcp");
if !project_mcp_dir.exists() {
eprintln!("❌ プロジェクトのmcp/ディレクトリが見つかりません: {}", project_mcp_dir.display());
return;
}
if mcp_dir.exists() {
fs_extra::dir::remove(&mcp_dir).expect("既存のmcp_dirの削除に失敗しました");
}
let mut options = CopyOptions::new();
options.overwrite = true; // 上書き
options.copy_inside = true; // 中身だけコピー
copy(&project_mcp_dir, &mcp_dir, &options).expect("コピーに失敗しました");
// 仮想環境の作成
let venv_path = config.venv_path();
if !venv_path.exists() {
println!("🐍 仮想環境を作成しています...");
let output = OtherCommand::new("python3")
.args(&["-m", "venv", ".venv"])
.current_dir(&mcp_dir)
.output()
.expect("venvの作成に失敗しました");
if !output.status.success() {
eprintln!("❌ venv作成エラー: {}", String::from_utf8_lossy(&output.stderr));
return;
}
println!("✅ 仮想環境を作成しました");
} else {
println!("✅ 仮想環境は既に存在します");
}
// 依存関係のインストール
println!("📦 依存関係をインストールしています...");
let pip_path = config.pip_executable();
let output = OtherCommand::new(&pip_path)
.args(&["install", "-r", "requirements.txt"])
.current_dir(&mcp_dir)
.output()
.expect("pipコマンドの実行に失敗しました");
if !output.status.success() {
eprintln!("❌ pip installエラー: {}", String::from_utf8_lossy(&output.stderr));
return;
}
println!("✅ MCP Server環境のセットアップが完了しました!");
println!("📍 セットアップ場所: {}", mcp_dir.display());
}
pub async fn run() {
println!("🚀 MCP Serverを起動しています...");
let config = ConfigPaths::new();
let mcp_dir = config.mcp_dir();
let python_path = config.python_executable();
let server_py_path = mcp_dir.join("server.py");
// セットアップの確認
if !server_py_path.exists() {
eprintln!("❌ server.pyが見つかりません。先に 'aigpt server setup' を実行してください。");
return;
}
if !python_path.exists() {
eprintln!("❌ Python実行ファイルが見つかりません。先に 'aigpt server setup' を実行してください。");
return;
}
// サーバーの起動
println!("🔗 サーバーを起動中... (Ctrl+Cで停止)");
let mut child = OtherCommand::new(&python_path)
.arg("server.py")
.current_dir(&mcp_dir)
.spawn()
.expect("MCP Serverの起動に失敗しました");
// サーバーの終了を待機
match child.wait() {
Ok(status) => {
if status.success() {
println!("✅ MCP Serverが正常に終了しました");
} else {
println!("❌ MCP Serverが異常終了しました: {}", status);
}
}
Err(e) => {
eprintln!("❌ MCP Serverの実行中にエラーが発生しました: {}", e);
}
}
}
pub async fn chat(message: &str) {
println!("💬 チャットを開始しています...");
let config = ConfigPaths::new();
let mcp_dir = config.mcp_dir();
let python_path = config.python_executable();
let chat_py_path = mcp_dir.join("chat.py");
// セットアップの確認
if !chat_py_path.exists() {
eprintln!("❌ chat.pyが見つかりません。先に 'aigpt server setup' を実行してください。");
return;
}
if !python_path.exists() {
eprintln!("❌ Python実行ファイルが見つかりません。先に 'aigpt server setup' を実行してください。");
return;
}
// チャットの実行
let output = OtherCommand::new(&python_path)
.args(&["chat.py", message])
.current_dir(&mcp_dir)
.output()
.expect("chat.pyの実行に失敗しました");
if output.status.success() {
let stdout = String::from_utf8_lossy(&output.stdout);
let stderr = String::from_utf8_lossy(&output.stderr);
if !stderr.is_empty() {
print!("{}", stderr);
}
print!("{}", stdout);
} else {
eprintln!("❌ チャット実行エラー: {}", String::from_utf8_lossy(&output.stderr));
}
}

1
shell Submodule

@ -0,0 +1 @@
Subproject commit 81ae0037d9d58669dc6bc202881fca5254ba5bf4

View File

@ -0,0 +1,18 @@
Metadata-Version: 2.4
Name: aigpt
Version: 0.1.0
Summary: Autonomous transmission AI with unique personality based on relationship parameters
Requires-Python: >=3.10
Requires-Dist: click>=8.0.0
Requires-Dist: typer>=0.9.0
Requires-Dist: fastapi-mcp>=0.1.0
Requires-Dist: pydantic>=2.0.0
Requires-Dist: httpx>=0.24.0
Requires-Dist: rich>=13.0.0
Requires-Dist: python-dotenv>=1.0.0
Requires-Dist: ollama>=0.1.0
Requires-Dist: openai>=1.0.0
Requires-Dist: uvicorn>=0.23.0
Requires-Dist: apscheduler>=3.10.0
Requires-Dist: croniter>=1.3.0
Requires-Dist: prompt-toolkit>=3.0.0

View File

@ -0,0 +1,22 @@
README.md
pyproject.toml
src/aigpt/__init__.py
src/aigpt/ai_provider.py
src/aigpt/chatgpt_importer.py
src/aigpt/cli.py
src/aigpt/config.py
src/aigpt/fortune.py
src/aigpt/mcp_server.py
src/aigpt/mcp_server_simple.py
src/aigpt/memory.py
src/aigpt/models.py
src/aigpt/persona.py
src/aigpt/relationship.py
src/aigpt/scheduler.py
src/aigpt/transmission.py
src/aigpt.egg-info/PKG-INFO
src/aigpt.egg-info/SOURCES.txt
src/aigpt.egg-info/dependency_links.txt
src/aigpt.egg-info/entry_points.txt
src/aigpt.egg-info/requires.txt
src/aigpt.egg-info/top_level.txt

View File

@ -0,0 +1 @@

View File

@ -0,0 +1,2 @@
[console_scripts]
aigpt = aigpt.cli:app

View File

@ -0,0 +1,13 @@
click>=8.0.0
typer>=0.9.0
fastapi-mcp>=0.1.0
pydantic>=2.0.0
httpx>=0.24.0
rich>=13.0.0
python-dotenv>=1.0.0
ollama>=0.1.0
openai>=1.0.0
uvicorn>=0.23.0
apscheduler>=3.10.0
croniter>=1.3.0
prompt-toolkit>=3.0.0

View File

@ -0,0 +1 @@
aigpt

View File

@ -30,11 +30,16 @@ class AIProvider(Protocol):
class OllamaProvider:
"""Ollama AI provider"""
def __init__(self, model: str = "qwen2.5", host: str = "http://localhost:11434"):
def __init__(self, model: str = "qwen2.5", host: Optional[str] = None):
self.model = model
self.host = host
self.client = ollama.Client(host=host)
# Use environment variable OLLAMA_HOST if available, otherwise use config or default
self.host = host or os.getenv('OLLAMA_HOST', 'http://127.0.0.1:11434')
# Ensure proper URL format
if not self.host.startswith('http'):
self.host = f'http://{self.host}'
self.client = ollama.Client(host=self.host, timeout=60.0) # 60秒タイムアウト
self.logger = logging.getLogger(__name__)
self.logger.info(f"OllamaProvider initialized with host: {self.host}, model: {self.model}")
async def generate_response(
self,
@ -81,6 +86,26 @@ Recent memories:
self.logger.error(f"Ollama generation failed: {e}")
return self._fallback_response(persona_state)
def chat(self, prompt: str, max_tokens: int = 200) -> str:
"""Simple chat interface"""
try:
response = self.client.chat(
model=self.model,
messages=[
{"role": "user", "content": prompt}
],
options={
"num_predict": max_tokens,
"temperature": 0.7,
"top_p": 0.9,
},
stream=False # ストリーミング無効化で安定性向上
)
return response['message']['content']
except Exception as e:
self.logger.error(f"Ollama chat failed (host: {self.host}): {e}")
return "I'm having trouble connecting to the AI model."
def _fallback_response(self, persona_state: PersonaState) -> str:
"""Fallback response based on mood"""
mood_responses = {
@ -102,7 +127,7 @@ class OpenAIProvider:
config = Config()
self.api_key = api_key or config.get_api_key("openai") or os.getenv("OPENAI_API_KEY")
if not self.api_key:
raise ValueError("OpenAI API key not provided. Set it with: ai-gpt config set providers.openai.api_key YOUR_KEY")
raise ValueError("OpenAI API key not provided. Set it with: aigpt config set providers.openai.api_key YOUR_KEY")
self.client = OpenAI(api_key=self.api_key)
self.logger = logging.getLogger(__name__)
@ -162,11 +187,21 @@ Recent memories:
return mood_responses.get(persona_state.current_mood, "I see.")
def create_ai_provider(provider: str, model: str, **kwargs) -> AIProvider:
def create_ai_provider(provider: str = "ollama", model: str = "qwen2.5", **kwargs) -> AIProvider:
"""Factory function to create AI providers"""
if provider == "ollama":
# Try to get host from config if not provided in kwargs
if 'host' not in kwargs:
try:
from .config import Config
config = Config()
config_host = config.get('providers.ollama.host')
if config_host:
kwargs['host'] = config_host
except:
pass # Use environment variable or default
return OllamaProvider(model=model, **kwargs)
elif provider == "openai":
return OpenAIProvider(model=model, **kwargs)
else:
raise ValueError(f"Unknown provider: {provider}")
raise ValueError(f"Unknown provider: {provider}")

View File

@ -0,0 +1,192 @@
"""ChatGPT conversation data importer for ai.gpt"""
import json
import uuid
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Any, Optional
import logging
from .models import Memory, MemoryLevel, Conversation
from .memory import MemoryManager
from .relationship import RelationshipTracker
logger = logging.getLogger(__name__)
class ChatGPTImporter:
"""Import ChatGPT conversation data into ai.gpt memory system"""
def __init__(self, data_dir: Path):
self.data_dir = data_dir
self.memory_manager = MemoryManager(data_dir)
self.relationship_tracker = RelationshipTracker(data_dir)
def import_from_file(self, file_path: Path, user_id: str = "chatgpt_user") -> Dict[str, Any]:
"""Import ChatGPT conversations from JSON file
Args:
file_path: Path to ChatGPT export JSON file
user_id: User ID to associate with imported conversations
Returns:
Dict with import statistics
"""
try:
with open(file_path, 'r', encoding='utf-8') as f:
chatgpt_data = json.load(f)
return self._import_conversations(chatgpt_data, user_id)
except Exception as e:
logger.error(f"Failed to import ChatGPT data: {e}")
raise
def _import_conversations(self, chatgpt_data: List[Dict], user_id: str) -> Dict[str, Any]:
"""Import multiple conversations from ChatGPT data"""
stats = {
"conversations_imported": 0,
"messages_imported": 0,
"user_messages": 0,
"assistant_messages": 0,
"skipped_messages": 0
}
for conversation_data in chatgpt_data:
try:
conv_stats = self._import_single_conversation(conversation_data, user_id)
# Update overall stats
stats["conversations_imported"] += 1
stats["messages_imported"] += conv_stats["messages"]
stats["user_messages"] += conv_stats["user_messages"]
stats["assistant_messages"] += conv_stats["assistant_messages"]
stats["skipped_messages"] += conv_stats["skipped"]
except Exception as e:
logger.warning(f"Failed to import conversation '{conversation_data.get('title', 'Unknown')}': {e}")
continue
logger.info(f"Import completed: {stats}")
return stats
def _import_single_conversation(self, conversation_data: Dict, user_id: str) -> Dict[str, int]:
"""Import a single conversation from ChatGPT"""
title = conversation_data.get("title", "Untitled")
create_time = conversation_data.get("create_time")
mapping = conversation_data.get("mapping", {})
stats = {"messages": 0, "user_messages": 0, "assistant_messages": 0, "skipped": 0}
# Extract messages in chronological order
messages = self._extract_messages_from_mapping(mapping)
for msg in messages:
try:
role = msg["author"]["role"]
content = self._extract_content(msg["content"])
create_time_msg = msg.get("create_time")
if not content or role not in ["user", "assistant"]:
stats["skipped"] += 1
continue
# Convert to ai.gpt format
if role == "user":
# User message - create memory entry
self._add_user_message(user_id, content, create_time_msg, title)
stats["user_messages"] += 1
elif role == "assistant":
# Assistant message - create AI response memory
self._add_assistant_message(user_id, content, create_time_msg, title)
stats["assistant_messages"] += 1
stats["messages"] += 1
except Exception as e:
logger.warning(f"Failed to process message in '{title}': {e}")
stats["skipped"] += 1
continue
logger.info(f"Imported conversation '{title}': {stats}")
return stats
def _extract_messages_from_mapping(self, mapping: Dict) -> List[Dict]:
"""Extract messages from ChatGPT mapping structure in chronological order"""
messages = []
for node_id, node_data in mapping.items():
message = node_data.get("message")
if message and message.get("author", {}).get("role") in ["user", "assistant"]:
# Skip system messages and hidden messages
metadata = message.get("metadata", {})
if not metadata.get("is_visually_hidden_from_conversation", False):
messages.append(message)
# Sort by create_time if available
messages.sort(key=lambda x: x.get("create_time") or 0)
return messages
def _extract_content(self, content_data: Dict) -> Optional[str]:
"""Extract text content from ChatGPT content structure"""
if not content_data:
return None
content_type = content_data.get("content_type")
if content_type == "text":
parts = content_data.get("parts", [])
if parts and parts[0]:
return parts[0].strip()
elif content_type == "user_editable_context":
# User context/instructions
user_instructions = content_data.get("user_instructions", "")
if user_instructions:
return f"[User Context] {user_instructions}"
return None
def _add_user_message(self, user_id: str, content: str, create_time: Optional[float], conversation_title: str):
"""Add user message to ai.gpt memory system"""
timestamp = datetime.fromtimestamp(create_time) if create_time else datetime.now()
# Create conversation record
conversation = Conversation(
id=str(uuid.uuid4()),
user_id=user_id,
user_message=content,
ai_response="", # Will be filled by next assistant message
timestamp=timestamp,
context={"source": "chatgpt_import", "conversation_title": conversation_title}
)
# Add to memory with CORE level (imported data is important)
memory = Memory(
id=str(uuid.uuid4()),
timestamp=timestamp,
content=content,
level=MemoryLevel.CORE,
importance_score=0.8 # High importance for imported data
)
self.memory_manager.add_memory(memory)
# Update relationship (positive interaction)
self.relationship_tracker.update_interaction(user_id, 1.0)
def _add_assistant_message(self, user_id: str, content: str, create_time: Optional[float], conversation_title: str):
"""Add assistant message to ai.gpt memory system"""
timestamp = datetime.fromtimestamp(create_time) if create_time else datetime.now()
# Add assistant response as memory (AI's own responses can inform future behavior)
memory = Memory(
id=str(uuid.uuid4()),
timestamp=timestamp,
content=f"[AI Response] {content}",
level=MemoryLevel.SUMMARY,
importance_score=0.6 # Medium importance for AI responses
)
self.memory_manager.add_memory(memory)

View File

@ -7,6 +7,12 @@ from rich.console import Console
from rich.table import Table
from rich.panel import Panel
from datetime import datetime, timedelta
import subprocess
import shlex
from prompt_toolkit import prompt as ptk_prompt
from prompt_toolkit.completion import WordCompleter
from prompt_toolkit.history import FileHistory
from prompt_toolkit.auto_suggest import AutoSuggestFromHistory
from .persona import Persona
from .transmission import TransmissionController
@ -14,6 +20,7 @@ from .mcp_server import AIGptMcpServer
from .ai_provider import create_ai_provider
from .scheduler import AIScheduler, TaskType
from .config import Config
from .project_manager import ContinuousDeveloper
app = typer.Typer(help="ai.gpt - Autonomous transmission AI with unique personality")
console = Console()
@ -47,7 +54,7 @@ def chat(
ai_provider = None
if provider and model:
try:
ai_provider = create_ai_provider(provider, model)
ai_provider = create_ai_provider(provider=provider, model=model)
console.print(f"[dim]Using {provider} with model {model}[/dim]\n")
except Exception as e:
console.print(f"[yellow]Warning: Could not create AI provider: {e}[/yellow]")
@ -234,7 +241,7 @@ def server(
# Create MCP server
mcp_server = AIGptMcpServer(data_dir)
app_instance = mcp_server.get_server().get_app()
app_instance = mcp_server.app
console.print(Panel(
f"[cyan]Starting ai.gpt MCP Server[/cyan]\n\n"
@ -369,6 +376,424 @@ def schedule(
console.print("Valid actions: add, list, enable, disable, remove, run")
@app.command()
def shell(
data_dir: Optional[Path] = typer.Option(None, "--data-dir", "-d", help="Data directory"),
model: Optional[str] = typer.Option("qwen2.5", "--model", "-m", help="AI model to use"),
provider: Optional[str] = typer.Option("ollama", "--provider", help="AI provider (ollama/openai)")
):
"""Interactive shell mode (ai.shell)"""
persona = get_persona(data_dir)
# Create AI provider
ai_provider = None
if provider and model:
try:
ai_provider = create_ai_provider(provider=provider, model=model)
console.print(f"[dim]Using {provider} with model {model}[/dim]\n")
except Exception as e:
console.print(f"[yellow]Warning: Could not create AI provider: {e}[/yellow]")
console.print("[yellow]Falling back to simple responses[/yellow]\n")
# Welcome message
console.print(Panel(
"[cyan]Welcome to ai.shell[/cyan]\n\n"
"Interactive AI-powered shell with command execution\n\n"
"Commands:\n"
" help - Show available commands\n"
" exit/quit - Exit shell\n"
" !<command> - Execute shell command\n"
" chat <message> - Chat with AI\n"
" status - Show AI status\n"
" clear - Clear screen\n\n"
"Type any message to interact with AI",
title="ai.shell",
border_style="green"
))
# Command completer with shell commands
builtin_commands = ['help', 'exit', 'quit', 'chat', 'status', 'clear', 'fortune', 'relationships', 'load']
# Add common shell commands
shell_commands = ['ls', 'cd', 'pwd', 'cat', 'echo', 'grep', 'find', 'mkdir', 'rm', 'cp', 'mv',
'git', 'python', 'pip', 'npm', 'node', 'cargo', 'rustc', 'docker', 'kubectl']
# AI-specific commands
ai_commands = ['analyze', 'generate', 'explain', 'optimize', 'refactor', 'test', 'document']
# Remote execution commands (ai.bot integration)
remote_commands = ['remote', 'isolated', 'aibot-status']
# Project management commands (Claude Code-like)
project_commands = ['project-status', 'suggest-next', 'continuous']
all_commands = builtin_commands + ['!' + cmd for cmd in shell_commands] + ai_commands + remote_commands + project_commands
completer = WordCompleter(all_commands, ignore_case=True)
# History file
actual_data_dir = data_dir if data_dir else DEFAULT_DATA_DIR
history_file = actual_data_dir / "shell_history.txt"
history = FileHistory(str(history_file))
# Main shell loop
current_user = "shell_user" # Default user for shell sessions
while True:
try:
# Get input with completion
user_input = ptk_prompt(
"ai.shell> ",
completer=completer,
history=history,
auto_suggest=AutoSuggestFromHistory()
).strip()
if not user_input:
continue
# Exit commands
if user_input.lower() in ['exit', 'quit']:
console.print("[cyan]Goodbye![/cyan]")
break
# Help command
elif user_input.lower() == 'help':
console.print(Panel(
"[cyan]ai.shell Commands:[/cyan]\n\n"
" help - Show this help message\n"
" exit/quit - Exit the shell\n"
" !<command> - Execute a shell command\n"
" chat <message> - Explicitly chat with AI\n"
" status - Show AI status\n"
" fortune - Check AI fortune\n"
" relationships - List all relationships\n"
" clear - Clear the screen\n"
" load - Load aishell.md project file\n\n"
"[cyan]AI Commands:[/cyan]\n"
" analyze <file> - Analyze a file with AI\n"
" generate <desc> - Generate code from description\n"
" explain <topic> - Get AI explanation\n\n"
"[cyan]Remote Commands (ai.bot):[/cyan]\n"
" remote <command> - Execute command in isolated container\n"
" isolated <code> - Run Python code in isolated environment\n"
" aibot-status - Check ai.bot server status\n\n"
"[cyan]Project Commands (Claude Code-like):[/cyan]\n"
" project-status - Analyze current project structure\n"
" suggest-next - AI suggests next development steps\n"
" continuous - Enable continuous development mode\n\n"
"You can also type any message to chat with AI\n"
"Use Tab for command completion",
title="Help",
border_style="yellow"
))
# Clear command
elif user_input.lower() == 'clear':
console.clear()
# Shell command execution
elif user_input.startswith('!'):
cmd = user_input[1:].strip()
if cmd:
try:
# Execute command
result = subprocess.run(
shlex.split(cmd),
capture_output=True,
text=True,
shell=False
)
if result.stdout:
console.print(result.stdout.rstrip())
if result.stderr:
console.print(f"[red]{result.stderr.rstrip()}[/red]")
if result.returncode != 0:
console.print(f"[red]Command exited with code {result.returncode}[/red]")
except FileNotFoundError:
console.print(f"[red]Command not found: {cmd.split()[0]}[/red]")
except Exception as e:
console.print(f"[red]Error executing command: {e}[/red]")
# Status command
elif user_input.lower() == 'status':
state = persona.get_current_state()
console.print(f"\nMood: {state.current_mood}")
console.print(f"Fortune: {state.fortune.fortune_value}/10")
rel = persona.relationships.get_or_create_relationship(current_user)
console.print(f"\nRelationship Status: {rel.status.value}")
console.print(f"Score: {rel.score:.2f} / {rel.threshold}")
# Fortune command
elif user_input.lower() == 'fortune':
fortune = persona.fortune_system.get_today_fortune()
fortune_bar = "🌟" * fortune.fortune_value + "" * (10 - fortune.fortune_value)
console.print(f"\n{fortune_bar}")
console.print(f"Today's Fortune: {fortune.fortune_value}/10")
# Relationships command
elif user_input.lower() == 'relationships':
if persona.relationships.relationships:
console.print("\n[cyan]Relationships:[/cyan]")
for user_id, rel in persona.relationships.relationships.items():
console.print(f" {user_id[:16]}... - {rel.status.value} ({rel.score:.2f})")
else:
console.print("[yellow]No relationships yet[/yellow]")
# Load aishell.md command
elif user_input.lower() in ['load', 'load aishell.md', 'project']:
# Try to find and load aishell.md
search_paths = [
Path.cwd() / "aishell.md",
Path.cwd() / "docs" / "aishell.md",
actual_data_dir.parent / "aishell.md",
Path.cwd() / "claude.md", # Also check for claude.md
]
loaded = False
for path in search_paths:
if path.exists():
console.print(f"[cyan]Loading project file: {path}[/cyan]")
with open(path, 'r', encoding='utf-8') as f:
content = f.read()
# Process with AI to understand project
load_prompt = f"I've loaded the project specification. Please analyze it and understand the project goals:\n\n{content[:3000]}"
response, _ = persona.process_interaction(current_user, load_prompt, ai_provider)
console.print(f"\n[green]Project loaded successfully![/green]")
console.print(f"[cyan]AI Understanding:[/cyan]\n{response}")
loaded = True
break
if not loaded:
console.print("[yellow]No aishell.md or claude.md found in project.[/yellow]")
console.print("Create aishell.md to define project goals and AI instructions.")
# AI-powered commands
elif user_input.lower().startswith('analyze '):
# Analyze file or code with project context
target = user_input[8:].strip()
if os.path.exists(target):
console.print(f"[cyan]Analyzing {target} with project context...[/cyan]")
try:
developer = ContinuousDeveloper(Path.cwd(), ai_provider)
analysis = developer.analyze_file(target)
console.print(f"\n[cyan]Analysis:[/cyan]\n{analysis}")
except Exception as e:
# Fallback to simple analysis
with open(target, 'r') as f:
content = f.read()
analysis_prompt = f"Analyze this file and provide insights:\n\n{content[:2000]}"
response, _ = persona.process_interaction(current_user, analysis_prompt, ai_provider)
console.print(f"\n[cyan]Analysis:[/cyan]\n{response}")
else:
console.print(f"[red]File not found: {target}[/red]")
elif user_input.lower().startswith('generate '):
# Generate code with project context
gen_prompt = user_input[9:].strip()
if gen_prompt:
console.print("[cyan]Generating code with project context...[/cyan]")
try:
developer = ContinuousDeveloper(Path.cwd(), ai_provider)
generated_code = developer.generate_code(gen_prompt)
console.print(f"\n[cyan]Generated Code:[/cyan]\n{generated_code}")
except Exception as e:
# Fallback to simple generation
full_prompt = f"Generate code for: {gen_prompt}. Provide clean, well-commented code."
response, _ = persona.process_interaction(current_user, full_prompt, ai_provider)
console.print(f"\n[cyan]Generated Code:[/cyan]\n{response}")
elif user_input.lower().startswith('explain '):
# Explain code or concept
topic = user_input[8:].strip()
if topic:
console.print(f"[cyan]Explaining {topic}...[/cyan]")
full_prompt = f"Explain this in detail: {topic}"
response, _ = persona.process_interaction(current_user, full_prompt, ai_provider)
console.print(f"\n[cyan]Explanation:[/cyan]\n{response}")
# Remote execution commands (ai.bot integration)
elif user_input.lower().startswith('remote '):
# Execute command in ai.bot isolated container
command = user_input[7:].strip()
if command:
console.print(f"[cyan]Executing remotely:[/cyan] {command}")
try:
import httpx
import asyncio
async def execute_remote():
async with httpx.AsyncClient(timeout=30.0) as client:
response = await client.post(
"http://localhost:8080/sh",
json={"command": command},
headers={"Content-Type": "application/json"}
)
return response
response = asyncio.run(execute_remote())
if response.status_code == 200:
result = response.json()
console.print(f"[green]Output:[/green]\n{result.get('output', '')}")
if result.get('error'):
console.print(f"[red]Error:[/red] {result.get('error')}")
console.print(f"[dim]Exit code: {result.get('exit_code', 0)} | Execution time: {result.get('execution_time', 'N/A')}[/dim]")
else:
console.print(f"[red]ai.bot error: HTTP {response.status_code}[/red]")
except Exception as e:
console.print(f"[red]Failed to connect to ai.bot: {e}[/red]")
elif user_input.lower().startswith('isolated '):
# Execute Python code in isolated environment
code = user_input[9:].strip()
if code:
console.print(f"[cyan]Running Python code in isolated container...[/cyan]")
try:
import httpx
import asyncio
async def execute_python():
python_command = f'python3 -c "{code.replace('"', '\\"')}"'
async with httpx.AsyncClient(timeout=30.0) as client:
response = await client.post(
"http://localhost:8080/sh",
json={"command": python_command},
headers={"Content-Type": "application/json"}
)
return response
response = asyncio.run(execute_python())
if response.status_code == 200:
result = response.json()
console.print(f"[green]Python Output:[/green]\n{result.get('output', '')}")
if result.get('error'):
console.print(f"[red]Error:[/red] {result.get('error')}")
else:
console.print(f"[red]ai.bot error: HTTP {response.status_code}[/red]")
except Exception as e:
console.print(f"[red]Failed to execute Python code: {e}[/red]")
elif user_input.lower() == 'aibot-status':
# Check ai.bot server status
console.print("[cyan]Checking ai.bot server status...[/cyan]")
try:
import httpx
import asyncio
async def check_status():
async with httpx.AsyncClient(timeout=10.0) as client:
response = await client.get("http://localhost:8080/status")
return response
response = asyncio.run(check_status())
if response.status_code == 200:
result = response.json()
console.print(f"[green]ai.bot is online![/green]")
console.print(f"Server info: {result}")
else:
console.print(f"[yellow]ai.bot responded with status {response.status_code}[/yellow]")
except Exception as e:
console.print(f"[red]ai.bot is offline: {e}[/red]")
console.print("[dim]Make sure ai.bot is running on localhost:8080[/dim]")
# Project management commands (Claude Code-like)
elif user_input.lower() == 'project-status':
# プロジェクト構造分析
console.print("[cyan]Analyzing project structure...[/cyan]")
try:
developer = ContinuousDeveloper(Path.cwd(), ai_provider)
analysis = developer.analyze_project_structure()
changes = developer.project_state.detect_changes()
console.print(f"[green]Project Analysis:[/green]")
console.print(f"Language: {analysis['language']}")
console.print(f"Framework: {analysis['framework']}")
console.print(f"Structure: {analysis['structure']}")
console.print(f"Dependencies: {analysis['dependencies']}")
console.print(f"Code Patterns: {analysis['patterns']}")
if changes:
console.print(f"\n[yellow]Recent Changes:[/yellow]")
for file_path, change_type in changes.items():
console.print(f" {change_type}: {file_path}")
else:
console.print(f"\n[dim]No recent changes detected[/dim]")
except Exception as e:
console.print(f"[red]Error analyzing project: {e}[/red]")
elif user_input.lower() == 'suggest-next':
# 次のステップを提案
console.print("[cyan]AI is analyzing project and suggesting next steps...[/cyan]")
try:
developer = ContinuousDeveloper(Path.cwd(), ai_provider)
suggestions = developer.suggest_next_steps()
console.print(f"[green]Suggested Next Steps:[/green]")
for i, suggestion in enumerate(suggestions, 1):
console.print(f" {i}. {suggestion}")
except Exception as e:
console.print(f"[red]Error generating suggestions: {e}[/red]")
elif user_input.lower().startswith('continuous'):
# 継続開発モード
console.print("[cyan]Enabling continuous development mode...[/cyan]")
console.print("[yellow]Continuous mode is experimental. Type 'exit-continuous' to exit.[/yellow]")
try:
developer = ContinuousDeveloper(Path.cwd(), ai_provider)
context = developer.load_project_context()
console.print(f"[green]Project context loaded:[/green]")
console.print(f"Context: {len(context)} characters")
# Add to session memory for continuous context
persona.process_interaction(current_user, f"Continuous development mode started for project: {context[:500]}", ai_provider)
console.print("[dim]Project context added to AI memory for continuous development.[/dim]")
except Exception as e:
console.print(f"[red]Error starting continuous mode: {e}[/red]")
# Chat command or direct message
else:
# Remove 'chat' prefix if present
if user_input.lower().startswith('chat '):
message = user_input[5:].strip()
else:
message = user_input
if message:
# Process interaction with AI
response, relationship_delta = persona.process_interaction(
current_user, message, ai_provider
)
# Display response
console.print(f"\n[cyan]AI:[/cyan] {response}")
# Show relationship change if significant
if abs(relationship_delta) >= 0.1:
if relationship_delta > 0:
console.print(f"[green](+{relationship_delta:.2f} relationship)[/green]")
else:
console.print(f"[red]({relationship_delta:.2f} relationship)[/red]")
except KeyboardInterrupt:
console.print("\n[yellow]Use 'exit' or 'quit' to leave the shell[/yellow]")
except EOFError:
console.print("\n[cyan]Goodbye![/cyan]")
break
except Exception as e:
console.print(f"[red]Error: {e}[/red]")
@app.command()
def config(
action: str = typer.Argument(..., help="Action: get, set, delete, list"),
@ -413,7 +838,8 @@ def config(
console.print(f"[yellow]Key '{key}' not found[/yellow]")
elif action == "list":
keys = config.list_keys(key or "")
config_instance = Config()
keys = config_instance.list_keys(key or "")
if not keys:
console.print("[yellow]No configuration keys found[/yellow]")
@ -424,7 +850,7 @@ def config(
table.add_column("Value", style="green")
for k in sorted(keys):
val = config.get(k)
val = config_instance.get(k)
# Hide sensitive values
if "password" in k or "api_key" in k:
display_val = "***hidden***" if val else "not set"
@ -440,5 +866,56 @@ def config(
console.print("Valid actions: get, set, delete, list")
@app.command()
def import_chatgpt(
file_path: Path = typer.Argument(..., help="Path to ChatGPT export JSON file"),
user_id: str = typer.Option("chatgpt_user", "--user-id", "-u", help="User ID for imported conversations"),
data_dir: Optional[Path] = typer.Option(None, "--data-dir", "-d", help="Data directory")
):
"""Import ChatGPT conversation data into ai.gpt memory system"""
from .chatgpt_importer import ChatGPTImporter
if data_dir is None:
data_dir = DEFAULT_DATA_DIR
data_dir.mkdir(parents=True, exist_ok=True)
if not file_path.exists():
console.print(f"[red]Error: File not found: {file_path}[/red]")
raise typer.Exit(1)
console.print(f"[cyan]Importing ChatGPT data from {file_path}[/cyan]")
console.print(f"User ID: {user_id}")
console.print(f"Data directory: {data_dir}")
try:
importer = ChatGPTImporter(data_dir)
stats = importer.import_from_file(file_path, user_id)
# Display results
table = Table(title="Import Results")
table.add_column("Metric", style="cyan")
table.add_column("Count", style="green")
table.add_row("Conversations imported", str(stats["conversations_imported"]))
table.add_row("Total messages", str(stats["messages_imported"]))
table.add_row("User messages", str(stats["user_messages"]))
table.add_row("Assistant messages", str(stats["assistant_messages"]))
table.add_row("Skipped messages", str(stats["skipped_messages"]))
console.print(table)
console.print(f"[green]✓ Import completed successfully![/green]")
# Show next steps
console.print("\n[cyan]Next steps:[/cyan]")
console.print(f"- Check memories: [yellow]aigpt status[/yellow]")
console.print(f"- Chat with AI: [yellow]aigpt chat {user_id} \"hello\"[/yellow]")
console.print(f"- View relationships: [yellow]aigpt relationships[/yellow]")
except Exception as e:
console.print(f"[red]Error during import: {e}[/red]")
raise typer.Exit(1)
if __name__ == "__main__":
app()

View File

@ -1,9 +1,16 @@
"""MCP Server for ai.gpt system"""
from typing import Optional, List, Dict, Any
from fastapi_mcp import FastapiMcpServer
from fastapi_mcp import FastApiMCP
from fastapi import FastAPI
from pathlib import Path
import logging
import subprocess
import os
import shlex
import httpx
import json
from .ai_provider import create_ai_provider
from .persona import Persona
from .models import Memory, Relationship, PersonaState
@ -17,13 +24,22 @@ class AIGptMcpServer:
def __init__(self, data_dir: Path):
self.data_dir = data_dir
self.persona = Persona(data_dir)
self.server = FastapiMcpServer("ai-gpt", "AI.GPT Memory and Relationship System")
# Create FastAPI app
self.app = FastAPI(
title="AI.GPT Memory and Relationship System",
description="MCP server for ai.gpt system"
)
# Create MCP server with FastAPI app
self.server = FastApiMCP(self.app)
self._register_tools()
def _register_tools(self):
"""Register all MCP tools"""
@self.server.tool("get_memories")
@self.app.get("/get_memories", operation_id="get_memories")
async def get_memories(user_id: Optional[str] = None, limit: int = 10) -> List[Dict[str, Any]]:
"""Get active memories from the AI's memory system"""
memories = self.persona.memory.get_active_memories(limit=limit)
@ -39,7 +55,109 @@ class AIGptMcpServer:
for mem in memories
]
@self.server.tool("get_relationship")
@self.app.get("/get_contextual_memories", operation_id="get_contextual_memories")
async def get_contextual_memories(query: str = "", limit: int = 10) -> Dict[str, List[Dict[str, Any]]]:
"""Get memories organized by priority with contextual relevance"""
memory_groups = self.persona.memory.get_contextual_memories(query=query, limit=limit)
result = {}
for group_name, memories in memory_groups.items():
result[group_name] = [
{
"id": mem.id,
"content": mem.content,
"level": mem.level.value,
"importance": mem.importance_score,
"is_core": mem.is_core,
"timestamp": mem.timestamp.isoformat(),
"summary": mem.summary,
"metadata": mem.metadata
}
for mem in memories
]
return result
@self.app.post("/search_memories", operation_id="search_memories")
async def search_memories(keywords: List[str], memory_types: Optional[List[str]] = None) -> List[Dict[str, Any]]:
"""Search memories by keywords and optionally filter by memory types"""
from .models import MemoryLevel
# Convert string memory types to enum if provided
level_filter = None
if memory_types:
level_filter = []
for mt in memory_types:
try:
level_filter.append(MemoryLevel(mt))
except ValueError:
pass # Skip invalid memory types
memories = self.persona.memory.search_memories(keywords, memory_types=level_filter)
return [
{
"id": mem.id,
"content": mem.content,
"level": mem.level.value,
"importance": mem.importance_score,
"is_core": mem.is_core,
"timestamp": mem.timestamp.isoformat(),
"summary": mem.summary,
"metadata": mem.metadata
}
for mem in memories
]
@self.app.post("/create_summary", operation_id="create_summary")
async def create_summary(user_id: str) -> Dict[str, Any]:
"""Create an AI-powered summary of recent memories"""
try:
ai_provider = create_ai_provider()
summary = self.persona.memory.create_smart_summary(user_id, ai_provider=ai_provider)
if summary:
return {
"success": True,
"summary": {
"id": summary.id,
"content": summary.content,
"level": summary.level.value,
"importance": summary.importance_score,
"timestamp": summary.timestamp.isoformat(),
"metadata": summary.metadata
}
}
else:
return {"success": False, "reason": "Not enough memories to summarize"}
except Exception as e:
logger.error(f"Failed to create summary: {e}")
return {"success": False, "reason": str(e)}
@self.app.post("/create_core_memory", operation_id="create_core_memory")
async def create_core_memory() -> Dict[str, Any]:
"""Create a core memory by analyzing all existing memories"""
try:
ai_provider = create_ai_provider()
core_memory = self.persona.memory.create_core_memory(ai_provider=ai_provider)
if core_memory:
return {
"success": True,
"core_memory": {
"id": core_memory.id,
"content": core_memory.content,
"level": core_memory.level.value,
"importance": core_memory.importance_score,
"timestamp": core_memory.timestamp.isoformat(),
"metadata": core_memory.metadata
}
}
else:
return {"success": False, "reason": "Not enough memories to create core memory"}
except Exception as e:
logger.error(f"Failed to create core memory: {e}")
return {"success": False, "reason": str(e)}
@self.app.get("/get_relationship", operation_id="get_relationship")
async def get_relationship(user_id: str) -> Dict[str, Any]:
"""Get relationship status with a specific user"""
rel = self.persona.relationships.get_or_create_relationship(user_id)
@ -53,7 +171,7 @@ class AIGptMcpServer:
"last_interaction": rel.last_interaction.isoformat() if rel.last_interaction else None
}
@self.server.tool("get_all_relationships")
@self.app.get("/get_all_relationships", operation_id="get_all_relationships")
async def get_all_relationships() -> List[Dict[str, Any]]:
"""Get all relationships"""
relationships = []
@ -67,7 +185,7 @@ class AIGptMcpServer:
})
return relationships
@self.server.tool("get_persona_state")
@self.app.get("/get_persona_state", operation_id="get_persona_state")
async def get_persona_state() -> Dict[str, Any]:
"""Get current persona state including fortune and mood"""
state = self.persona.get_current_state()
@ -82,7 +200,22 @@ class AIGptMcpServer:
"active_memory_count": len(state.active_memories)
}
@self.server.tool("process_interaction")
@self.app.post("/get_context_prompt", operation_id="get_context_prompt")
async def get_context_prompt(user_id: str, message: str) -> Dict[str, Any]:
"""Get context-aware prompt for AI response generation"""
try:
context_prompt = self.persona.build_context_prompt(user_id, message)
return {
"success": True,
"context_prompt": context_prompt,
"user_id": user_id,
"message": message
}
except Exception as e:
logger.error(f"Failed to build context prompt: {e}")
return {"success": False, "reason": str(e)}
@self.app.post("/process_interaction", operation_id="process_interaction")
async def process_interaction(user_id: str, message: str) -> Dict[str, Any]:
"""Process an interaction with a user"""
response, relationship_delta = self.persona.process_interaction(user_id, message)
@ -96,7 +229,7 @@ class AIGptMcpServer:
"relationship_status": rel.status.value
}
@self.server.tool("check_transmission_eligibility")
@self.app.get("/check_transmission_eligibility", operation_id="check_transmission_eligibility")
async def check_transmission_eligibility(user_id: str) -> Dict[str, Any]:
"""Check if AI can transmit to a specific user"""
can_transmit = self.persona.can_transmit_to(user_id)
@ -110,7 +243,7 @@ class AIGptMcpServer:
"transmission_enabled": rel.transmission_enabled
}
@self.server.tool("get_fortune")
@self.app.get("/get_fortune", operation_id="get_fortune")
async def get_fortune() -> Dict[str, Any]:
"""Get today's AI fortune"""
fortune = self.persona.fortune_system.get_today_fortune()
@ -125,7 +258,7 @@ class AIGptMcpServer:
"personality_modifiers": modifiers
}
@self.server.tool("summarize_memories")
@self.app.post("/summarize_memories", operation_id="summarize_memories")
async def summarize_memories(user_id: str) -> Optional[Dict[str, Any]]:
"""Create a summary of recent memories for a user"""
summary = self.persona.memory.summarize_memories(user_id)
@ -138,12 +271,241 @@ class AIGptMcpServer:
}
return None
@self.server.tool("run_maintenance")
@self.app.post("/run_maintenance", operation_id="run_maintenance")
async def run_maintenance() -> Dict[str, str]:
"""Run daily maintenance tasks"""
self.persona.daily_maintenance()
return {"status": "Maintenance completed successfully"}
# Shell integration tools (ai.shell)
@self.app.post("/execute_command", operation_id="execute_command")
async def execute_command(command: str, working_dir: str = ".") -> Dict[str, Any]:
"""Execute a shell command"""
try:
result = subprocess.run(
shlex.split(command),
cwd=working_dir,
capture_output=True,
text=True,
timeout=60
)
return {
"status": "success" if result.returncode == 0 else "error",
"returncode": result.returncode,
"stdout": result.stdout,
"stderr": result.stderr,
"command": command
}
except subprocess.TimeoutExpired:
return {"error": "Command timed out"}
except Exception as e:
return {"error": str(e)}
@self.app.post("/analyze_file", operation_id="analyze_file")
async def analyze_file(file_path: str, analysis_prompt: str = "Analyze this file") -> Dict[str, Any]:
"""Analyze a file using AI"""
try:
if not os.path.exists(file_path):
return {"error": f"File not found: {file_path}"}
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# Get AI provider from app state
ai_provider = getattr(self.app.state, 'ai_provider', 'ollama')
ai_model = getattr(self.app.state, 'ai_model', 'qwen2.5')
provider = create_ai_provider(ai_provider, ai_model)
# Analyze with AI
prompt = f"{analysis_prompt}\n\nFile: {file_path}\n\nContent:\n{content}"
analysis = provider.generate_response(prompt, "You are a code analyst.")
return {
"analysis": analysis,
"file_path": file_path,
"file_size": len(content),
"line_count": len(content.split('\n'))
}
except Exception as e:
return {"error": str(e)}
@self.app.post("/write_file", operation_id="write_file")
async def write_file(file_path: str, content: str, backup: bool = True) -> Dict[str, Any]:
"""Write content to a file"""
try:
file_path_obj = Path(file_path)
# Create backup if requested
backup_path = None
if backup and file_path_obj.exists():
backup_path = f"{file_path}.backup"
with open(file_path, 'r', encoding='utf-8') as src:
with open(backup_path, 'w', encoding='utf-8') as dst:
dst.write(src.read())
# Write file
file_path_obj.parent.mkdir(parents=True, exist_ok=True)
with open(file_path, 'w', encoding='utf-8') as f:
f.write(content)
return {
"status": "success",
"file_path": file_path,
"backup_path": backup_path,
"bytes_written": len(content.encode('utf-8'))
}
except Exception as e:
return {"error": str(e)}
@self.app.get("/read_project_file", operation_id="read_project_file")
async def read_project_file(file_name: str = "aishell.md") -> Dict[str, Any]:
"""Read project files like aishell.md (similar to claude.md)"""
try:
# Check common locations
search_paths = [
Path.cwd() / file_name,
Path.cwd() / "docs" / file_name,
self.data_dir.parent / file_name,
]
for path in search_paths:
if path.exists():
with open(path, 'r', encoding='utf-8') as f:
content = f.read()
return {
"content": content,
"path": str(path),
"exists": True
}
return {
"exists": False,
"searched_paths": [str(p) for p in search_paths],
"error": f"{file_name} not found"
}
except Exception as e:
return {"error": str(e)}
@self.app.get("/list_files", operation_id="list_files")
async def list_files(directory: str = ".", pattern: str = "*") -> Dict[str, Any]:
"""List files in a directory"""
try:
dir_path = Path(directory)
if not dir_path.exists():
return {"error": f"Directory not found: {directory}"}
files = []
for item in dir_path.glob(pattern):
files.append({
"name": item.name,
"path": str(item),
"is_file": item.is_file(),
"is_dir": item.is_dir(),
"size": item.stat().st_size if item.is_file() else None
})
return {
"directory": directory,
"pattern": pattern,
"files": files,
"count": len(files)
}
except Exception as e:
return {"error": str(e)}
# ai.bot integration tools
@self.app.post("/remote_shell", operation_id="remote_shell")
async def remote_shell(command: str, ai_bot_url: str = "http://localhost:8080") -> Dict[str, Any]:
"""Execute command via ai.bot /sh functionality (systemd-nspawn isolated execution)"""
try:
async with httpx.AsyncClient(timeout=30.0) as client:
# ai.bot の /sh エンドポイントに送信
response = await client.post(
f"{ai_bot_url}/sh",
json={"command": command},
headers={"Content-Type": "application/json"}
)
if response.status_code == 200:
result = response.json()
return {
"status": "success",
"command": command,
"output": result.get("output", ""),
"error": result.get("error", ""),
"exit_code": result.get("exit_code", 0),
"execution_time": result.get("execution_time", ""),
"container_id": result.get("container_id", ""),
"isolated": True # systemd-nspawn isolation
}
else:
return {
"status": "error",
"error": f"ai.bot responded with status {response.status_code}",
"response_text": response.text
}
except httpx.TimeoutException:
return {"status": "error", "error": "Request to ai.bot timed out"}
except Exception as e:
return {"status": "error", "error": f"Failed to connect to ai.bot: {str(e)}"}
@self.app.get("/ai_bot_status", operation_id="ai_bot_status")
async def ai_bot_status(ai_bot_url: str = "http://localhost:8080") -> Dict[str, Any]:
"""Check ai.bot server status and available commands"""
try:
async with httpx.AsyncClient(timeout=10.0) as client:
response = await client.get(f"{ai_bot_url}/status")
if response.status_code == 200:
result = response.json()
return {
"status": "online",
"ai_bot_url": ai_bot_url,
"server_info": result,
"shell_available": True
}
else:
return {
"status": "error",
"error": f"ai.bot status check failed: {response.status_code}"
}
except Exception as e:
return {
"status": "offline",
"error": f"Cannot connect to ai.bot: {str(e)}",
"ai_bot_url": ai_bot_url
}
@self.app.post("/isolated_python", operation_id="isolated_python")
async def isolated_python(code: str, ai_bot_url: str = "http://localhost:8080") -> Dict[str, Any]:
"""Execute Python code in isolated ai.bot environment"""
# Python コードを /sh 経由で実行
python_command = f'python3 -c "{code.replace('"', '\\"')}"'
return await remote_shell(python_command, ai_bot_url)
@self.app.post("/isolated_analysis", operation_id="isolated_analysis")
async def isolated_analysis(file_path: str, analysis_type: str = "structure", ai_bot_url: str = "http://localhost:8080") -> Dict[str, Any]:
"""Perform code analysis in isolated environment"""
if analysis_type == "structure":
command = f"find {file_path} -type f -name '*.py' | head -20"
elif analysis_type == "lines":
command = f"wc -l {file_path}"
elif analysis_type == "syntax":
command = f"python3 -m py_compile {file_path}"
else:
command = f"file {file_path}"
return await remote_shell(command, ai_bot_url)
# Mount MCP server
self.server.mount()
def get_server(self) -> FastapiMcpServer:
def get_server(self) -> FastApiMCP:
"""Get the FastAPI MCP server instance"""
return self.server
return self.server
async def close(self):
"""Cleanup resources"""
pass

View File

@ -0,0 +1,146 @@
"""Simple MCP Server implementation for ai.gpt"""
from mcp import Server
from mcp.types import Tool, TextContent
from pathlib import Path
from typing import Any, Dict, List, Optional
import json
from .persona import Persona
from .ai_provider import create_ai_provider
import subprocess
import os
def create_mcp_server(data_dir: Path, enable_card: bool = False) -> Server:
"""Create MCP server with ai.gpt tools"""
server = Server("aigpt")
persona = Persona(data_dir)
@server.tool()
async def get_memories(limit: int = 10) -> List[Dict[str, Any]]:
"""Get active memories from the AI's memory system"""
memories = persona.memory.get_active_memories(limit=limit)
return [
{
"id": mem.id,
"content": mem.content,
"level": mem.level.value,
"importance": mem.importance_score,
"is_core": mem.is_core,
"timestamp": mem.timestamp.isoformat()
}
for mem in memories
]
@server.tool()
async def get_relationship(user_id: str) -> Dict[str, Any]:
"""Get relationship status with a specific user"""
rel = persona.relationships.get_or_create_relationship(user_id)
return {
"user_id": rel.user_id,
"status": rel.status.value,
"score": rel.score,
"transmission_enabled": rel.transmission_enabled,
"is_broken": rel.is_broken,
"total_interactions": rel.total_interactions,
"last_interaction": rel.last_interaction.isoformat() if rel.last_interaction else None
}
@server.tool()
async def process_interaction(user_id: str, message: str, provider: str = "ollama", model: str = "qwen2.5") -> Dict[str, Any]:
"""Process an interaction with a user"""
ai_provider = create_ai_provider(provider, model)
response, relationship_delta = persona.process_interaction(user_id, message, ai_provider)
rel = persona.relationships.get_or_create_relationship(user_id)
return {
"response": response,
"relationship_delta": relationship_delta,
"new_relationship_score": rel.score,
"transmission_enabled": rel.transmission_enabled,
"relationship_status": rel.status.value
}
@server.tool()
async def get_fortune() -> Dict[str, Any]:
"""Get today's AI fortune"""
fortune = persona.fortune_system.get_today_fortune()
modifiers = persona.fortune_system.get_personality_modifier(fortune)
return {
"value": fortune.fortune_value,
"date": fortune.date.isoformat(),
"consecutive_good": fortune.consecutive_good,
"consecutive_bad": fortune.consecutive_bad,
"breakthrough": fortune.breakthrough_triggered,
"personality_modifiers": modifiers
}
@server.tool()
async def execute_command(command: str, working_dir: str = ".") -> Dict[str, Any]:
"""Execute a shell command"""
try:
import shlex
result = subprocess.run(
shlex.split(command),
cwd=working_dir,
capture_output=True,
text=True,
timeout=60
)
return {
"status": "success" if result.returncode == 0 else "error",
"returncode": result.returncode,
"stdout": result.stdout,
"stderr": result.stderr,
"command": command
}
except subprocess.TimeoutExpired:
return {"error": "Command timed out"}
except Exception as e:
return {"error": str(e)}
@server.tool()
async def analyze_file(file_path: str) -> Dict[str, Any]:
"""Analyze a file using AI"""
try:
if not os.path.exists(file_path):
return {"error": f"File not found: {file_path}"}
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
ai_provider = create_ai_provider("ollama", "qwen2.5")
prompt = f"Analyze this file and provide insights:\\n\\nFile: {file_path}\\n\\nContent:\\n{content[:2000]}"
analysis = ai_provider.generate_response(prompt, "You are a code analyst.")
return {
"analysis": analysis,
"file_path": file_path,
"file_size": len(content),
"line_count": len(content.split('\\n'))
}
except Exception as e:
return {"error": str(e)}
return server
async def main():
"""Run MCP server"""
import sys
from mcp import stdio_server
data_dir = Path.home() / ".config" / "syui" / "ai" / "gpt" / "data"
data_dir.mkdir(parents=True, exist_ok=True)
server = create_mcp_server(data_dir)
await stdio_server(server)
if __name__ == "__main__":
import asyncio
asyncio.run(main())

View File

@ -67,8 +67,13 @@ class MemoryManager:
self._save_memories()
return memory
def summarize_memories(self, user_id: str) -> Optional[Memory]:
"""Create summary from recent memories"""
def add_memory(self, memory: Memory):
"""Add a memory directly to the system"""
self.memories[memory.id] = memory
self._save_memories()
def create_smart_summary(self, user_id: str, ai_provider=None) -> Optional[Memory]:
"""Create AI-powered thematic summary from recent memories"""
recent_memories = [
mem for mem in self.memories.values()
if mem.level == MemoryLevel.FULL_LOG
@ -78,8 +83,40 @@ class MemoryManager:
if len(recent_memories) < 5:
return None
# Simple summary creation (in real implementation, use AI)
summary_content = f"Summary of {len(recent_memories)} recent interactions"
# Sort by timestamp for chronological analysis
recent_memories.sort(key=lambda m: m.timestamp)
# Prepare conversation context for AI analysis
conversations_text = "\n\n".join([
f"[{mem.timestamp.strftime('%Y-%m-%d %H:%M')}] {mem.content}"
for mem in recent_memories
])
summary_prompt = f"""
Analyze these recent conversations and create a thematic summary focusing on:
1. Communication patterns and user preferences
2. Technical topics and problem-solving approaches
3. Relationship progression and trust level
4. Key recurring themes and interests
Conversations:
{conversations_text}
Create a concise summary (2-3 sentences) that captures the essence of this interaction period:
"""
try:
if ai_provider:
summary_content = ai_provider.chat(summary_prompt, max_tokens=200)
else:
# Fallback to pattern-based analysis
themes = self._extract_themes(recent_memories)
summary_content = f"Themes: {', '.join(themes[:3])}. {len(recent_memories)} interactions with focus on technical discussions."
except Exception as e:
self.logger.warning(f"AI summary failed, using fallback: {e}")
themes = self._extract_themes(recent_memories)
summary_content = f"Themes: {', '.join(themes[:3])}. {len(recent_memories)} interactions."
summary_id = hashlib.sha256(
f"summary_{datetime.now().isoformat()}".encode()
).hexdigest()[:16]
@ -87,23 +124,154 @@ class MemoryManager:
summary = Memory(
id=summary_id,
timestamp=datetime.now(),
content=summary_content,
content=f"SUMMARY ({len(recent_memories)} conversations): {summary_content}",
summary=summary_content,
level=MemoryLevel.SUMMARY,
importance_score=0.5
importance_score=0.6,
metadata={
"memory_count": len(recent_memories),
"time_span": f"{recent_memories[0].timestamp.date()} to {recent_memories[-1].timestamp.date()}",
"themes": self._extract_themes(recent_memories)[:5]
}
)
self.memories[summary.id] = summary
# Mark summarized memories for potential forgetting
# Reduce importance of summarized memories
for mem in recent_memories:
mem.importance_score *= 0.9
mem.importance_score *= 0.8
self._save_memories()
return summary
def _extract_themes(self, memories: List[Memory]) -> List[str]:
"""Extract common themes from memory content"""
common_words = {}
for memory in memories:
# Simple keyword extraction
words = memory.content.lower().split()
for word in words:
if len(word) > 4 and word.isalpha():
common_words[word] = common_words.get(word, 0) + 1
# Return most frequent meaningful words
return sorted(common_words.keys(), key=common_words.get, reverse=True)[:10]
def create_core_memory(self, ai_provider=None) -> Optional[Memory]:
"""Analyze all memories to extract core personality-forming elements"""
# Collect all non-forgotten memories for analysis
all_memories = [
mem for mem in self.memories.values()
if mem.level != MemoryLevel.FORGOTTEN
]
if len(all_memories) < 10:
return None
# Sort by importance and timestamp for comprehensive analysis
all_memories.sort(key=lambda m: (m.importance_score, m.timestamp), reverse=True)
# Prepare memory context for AI analysis
memory_context = "\n".join([
f"[{mem.level.value}] {mem.timestamp.strftime('%Y-%m-%d')}: {mem.content[:200]}..."
for mem in all_memories[:20] # Top 20 memories
])
core_prompt = f"""
Analyze these conversations and memories to identify core personality elements that define this user relationship:
1. Communication style and preferences
2. Core values and principles
3. Problem-solving patterns
4. Trust level and relationship depth
5. Unique characteristics that make this relationship special
Memories:
{memory_context}
Extract the essential personality-forming elements (2-3 sentences) that should NEVER be forgotten:
"""
try:
if ai_provider:
core_content = ai_provider.chat(core_prompt, max_tokens=150)
else:
# Fallback to pattern analysis
user_patterns = self._analyze_user_patterns(all_memories)
core_content = f"User shows {user_patterns['communication_style']} communication, focuses on {user_patterns['main_interests']}, and demonstrates {user_patterns['problem_solving']} approach."
except Exception as e:
self.logger.warning(f"AI core analysis failed, using fallback: {e}")
user_patterns = self._analyze_user_patterns(all_memories)
core_content = f"Core pattern: {user_patterns['communication_style']} style, {user_patterns['main_interests']} interests."
# Create core memory
core_id = hashlib.sha256(
f"core_{datetime.now().isoformat()}".encode()
).hexdigest()[:16]
core_memory = Memory(
id=core_id,
timestamp=datetime.now(),
content=f"CORE PERSONALITY: {core_content}",
summary=core_content,
level=MemoryLevel.CORE,
importance_score=1.0,
is_core=True,
metadata={
"source_memories": len(all_memories),
"analysis_date": datetime.now().isoformat(),
"patterns": self._analyze_user_patterns(all_memories)
}
)
self.memories[core_memory.id] = core_memory
self._save_memories()
self.logger.info(f"Core memory created: {core_id}")
return core_memory
def _analyze_user_patterns(self, memories: List[Memory]) -> Dict[str, str]:
"""Analyze patterns in user behavior from memories"""
# Extract patterns from conversation content
all_content = " ".join([mem.content.lower() for mem in memories])
# Simple pattern detection
communication_indicators = {
"technical": ["code", "implementation", "system", "api", "database"],
"casual": ["thanks", "please", "sorry", "help"],
"formal": ["could", "would", "should", "proper"]
}
problem_solving_indicators = {
"systematic": ["first", "then", "next", "step", "plan"],
"experimental": ["try", "test", "experiment", "see"],
"theoretical": ["concept", "design", "architecture", "pattern"]
}
# Score each pattern
communication_style = max(
communication_indicators.keys(),
key=lambda style: sum(all_content.count(word) for word in communication_indicators[style])
)
problem_solving = max(
problem_solving_indicators.keys(),
key=lambda style: sum(all_content.count(word) for word in problem_solving_indicators[style])
)
# Extract main interests from themes
themes = self._extract_themes(memories)
main_interests = ", ".join(themes[:3]) if themes else "general technology"
return {
"communication_style": communication_style,
"problem_solving": problem_solving,
"main_interests": main_interests,
"interaction_count": len(memories)
}
def identify_core_memories(self) -> List[Memory]:
"""Identify memories that should become core (never forgotten)"""
"""Identify existing memories that should become core (legacy method)"""
core_candidates = [
mem for mem in self.memories.values()
if mem.importance_score > 0.8
@ -140,7 +308,7 @@ class MemoryManager:
self._save_memories()
def get_active_memories(self, limit: int = 10) -> List[Memory]:
"""Get currently active memories for persona"""
"""Get currently active memories for persona (legacy method)"""
active = [
mem for mem in self.memories.values()
if mem.level != MemoryLevel.FORGOTTEN
@ -152,4 +320,89 @@ class MemoryManager:
reverse=True
)
return active[:limit]
return active[:limit]
def get_contextual_memories(self, query: str = "", limit: int = 10) -> Dict[str, List[Memory]]:
"""Get memories organized by priority with contextual relevance"""
all_memories = [
mem for mem in self.memories.values()
if mem.level != MemoryLevel.FORGOTTEN
]
# Categorize memories by type and importance
core_memories = [mem for mem in all_memories if mem.level == MemoryLevel.CORE]
summary_memories = [mem for mem in all_memories if mem.level == MemoryLevel.SUMMARY]
recent_memories = [
mem for mem in all_memories
if mem.level == MemoryLevel.FULL_LOG
and (datetime.now() - mem.timestamp).days < 3
]
# Apply keyword relevance if query provided
if query:
query_lower = query.lower()
def relevance_score(memory: Memory) -> float:
content_score = 1 if query_lower in memory.content.lower() else 0
summary_score = 1 if memory.summary and query_lower in memory.summary.lower() else 0
metadata_score = 1 if any(
query_lower in str(v).lower()
for v in (memory.metadata or {}).values()
) else 0
return content_score + summary_score + metadata_score
# Re-rank by relevance while maintaining type priority
core_memories.sort(key=lambda m: (relevance_score(m), m.importance_score), reverse=True)
summary_memories.sort(key=lambda m: (relevance_score(m), m.importance_score), reverse=True)
recent_memories.sort(key=lambda m: (relevance_score(m), m.importance_score), reverse=True)
else:
# Sort by importance and recency
core_memories.sort(key=lambda m: (m.importance_score, m.timestamp), reverse=True)
summary_memories.sort(key=lambda m: (m.importance_score, m.timestamp), reverse=True)
recent_memories.sort(key=lambda m: (m.importance_score, m.timestamp), reverse=True)
# Return organized memory structure
return {
"core": core_memories[:3], # Always include top core memories
"summary": summary_memories[:3], # Recent summaries
"recent": recent_memories[:limit-6], # Fill remaining with recent
"all_active": all_memories[:limit] # Fallback for simple access
}
def search_memories(self, keywords: List[str], memory_types: List[MemoryLevel] = None) -> List[Memory]:
"""Search memories by keywords and optionally filter by memory types"""
if memory_types is None:
memory_types = [MemoryLevel.CORE, MemoryLevel.SUMMARY, MemoryLevel.FULL_LOG]
matching_memories = []
for memory in self.memories.values():
if memory.level not in memory_types or memory.level == MemoryLevel.FORGOTTEN:
continue
# Check if any keyword matches in content, summary, or metadata
content_text = f"{memory.content} {memory.summary or ''}"
if memory.metadata:
content_text += " " + " ".join(str(v) for v in memory.metadata.values())
content_lower = content_text.lower()
# Score by keyword matches
match_score = sum(
keyword.lower() in content_lower
for keyword in keywords
)
if match_score > 0:
# Add match score to memory for sorting
memory_copy = memory.model_copy()
memory_copy.importance_score += match_score * 0.1
matching_memories.append(memory_copy)
# Sort by relevance (match score + importance + core status)
matching_memories.sort(
key=lambda m: (m.is_core, m.importance_score, m.timestamp),
reverse=True
)
return matching_memories

View File

@ -1,9 +1,9 @@
"""Data models for ai.gpt system"""
from datetime import datetime
from datetime import datetime, date
from typing import Optional, Dict, List, Any
from enum import Enum
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, field_validator
class MemoryLevel(str, Enum):
@ -30,9 +30,18 @@ class Memory(BaseModel):
content: str
summary: Optional[str] = None
level: MemoryLevel = MemoryLevel.FULL_LOG
importance_score: float = Field(ge=0.0, le=1.0)
importance_score: float
is_core: bool = False
decay_rate: float = 0.01
metadata: Optional[Dict[str, Any]] = None
@field_validator('importance_score')
@classmethod
def validate_importance_score(cls, v):
"""Ensure importance_score is within valid range, handle floating point precision issues"""
if abs(v) < 1e-10: # Very close to zero
return 0.0
return max(0.0, min(1.0, v))
class Relationship(BaseModel):
@ -52,7 +61,7 @@ class Relationship(BaseModel):
class AIFortune(BaseModel):
"""Daily AI fortune affecting personality"""
date: datetime.date
date: date
fortune_value: int = Field(ge=1, le=10)
consecutive_good: int = 0
consecutive_bad: int = 0

View File

@ -92,27 +92,85 @@ class Persona:
else:
return "contemplative"
def build_context_prompt(self, user_id: str, current_message: str) -> str:
"""Build context-aware prompt with relevant memories"""
# Get contextual memories based on current message
memory_groups = self.memory.get_contextual_memories(query=current_message, limit=8)
# Build context sections
context_parts = []
# Core personality elements (always included)
if memory_groups["core"]:
core_context = "\n".join([mem.content for mem in memory_groups["core"]])
context_parts.append(f"CORE PERSONALITY:\n{core_context}")
# Recent summaries for context
if memory_groups["summary"]:
summary_context = "\n".join([mem.summary or mem.content for mem in memory_groups["summary"]])
context_parts.append(f"RECENT PATTERNS:\n{summary_context}")
# Recent specific interactions
if memory_groups["recent"]:
recent_context = "\n".join([
f"[{mem.timestamp.strftime('%m-%d')}] {mem.content[:100]}..."
for mem in memory_groups["recent"][:3]
])
context_parts.append(f"RECENT INTERACTIONS:\n{recent_context}")
# Get current persona state
state = self.get_current_state()
# Build final prompt
context_prompt = f"""You are an AI with persistent memory and evolving relationships. Your current state:
PERSONALITY: {', '.join([f'{k}={v:.1f}' for k, v in state.base_personality.items()])}
MOOD: {state.current_mood}
FORTUNE: {state.fortune.fortune_value}/10
"""
if context_parts:
context_prompt += "RELEVANT CONTEXT:\n" + "\n\n".join(context_parts) + "\n\n"
context_prompt += f"""Respond to this message while staying true to your personality and the established relationship context:
User: {current_message}
AI:"""
return context_prompt
def process_interaction(self, user_id: str, message: str, ai_provider=None) -> tuple[str, float]:
"""Process user interaction and generate response"""
"""Process user interaction and generate response with enhanced context"""
# Get current state
state = self.get_current_state()
# Get relationship with user
relationship = self.relationships.get_or_create_relationship(user_id)
# Simple response generation (use AI provider if available)
# Enhanced response generation with context awareness
if relationship.is_broken:
response = "..."
relationship_delta = 0.0
else:
if ai_provider:
# Use AI provider for response generation
memories = self.memory.get_active_memories(limit=5)
import asyncio
response = asyncio.run(
ai_provider.generate_response(message, state, memories)
)
# Calculate relationship delta based on interaction quality
# Build context-aware prompt
context_prompt = self.build_context_prompt(user_id, message)
# Generate response using AI with full context
try:
response = ai_provider.chat(context_prompt, max_tokens=200)
# Clean up response if it includes the prompt echo
if "AI:" in response:
response = response.split("AI:")[-1].strip()
except Exception as e:
self.logger.error(f"AI response generation failed: {e}")
response = f"I appreciate your message about {message[:50]}..."
# Calculate relationship delta based on interaction quality and context
if state.current_mood in ["joyful", "cheerful"]:
relationship_delta = 2.0
elif relationship.status.value == "close_friend":
@ -120,8 +178,14 @@ class Persona:
else:
relationship_delta = 1.0
else:
# Fallback to simple responses
if state.current_mood == "joyful":
# Context-aware fallback responses
memory_groups = self.memory.get_contextual_memories(query=message, limit=3)
if memory_groups["core"]:
# Reference core memories for continuity
response = f"Based on our relationship, I think {message.lower()} connects to what we've discussed before."
relationship_delta = 1.5
elif state.current_mood == "joyful":
response = f"What a wonderful day! {message} sounds interesting!"
relationship_delta = 2.0
elif relationship.status.value == "close_friend":
@ -171,11 +235,16 @@ class Persona:
if core_memories:
self.logger.info(f"Identified {len(core_memories)} new core memories")
# Create memory summaries
# Create memory summaries
for user_id in self.relationships.relationships:
summary = self.memory.summarize_memories(user_id)
if summary:
self.logger.info(f"Created summary for interactions with {user_id}")
try:
from .ai_provider import create_ai_provider
ai_provider = create_ai_provider()
summary = self.memory.create_smart_summary(user_id, ai_provider=ai_provider)
if summary:
self.logger.info(f"Created smart summary for interactions with {user_id}")
except Exception as e:
self.logger.warning(f"Could not create AI summary for {user_id}: {e}")
self._save_state()
self.logger.info("Daily maintenance completed")

View File

@ -0,0 +1,321 @@
"""Project management and continuous development logic for ai.shell"""
import json
import os
from pathlib import Path
from typing import Dict, List, Optional, Any
from datetime import datetime
import subprocess
import hashlib
from .models import Memory
from .ai_provider import AIProvider
class ProjectState:
"""プロジェクトの現在状態を追跡"""
def __init__(self, project_root: Path):
self.project_root = project_root
self.files_state: Dict[str, str] = {} # ファイルパス: ハッシュ
self.last_analysis: Optional[datetime] = None
self.project_context: Optional[str] = None
self.development_goals: List[str] = []
self.known_patterns: Dict[str, Any] = {}
def scan_project_files(self) -> Dict[str, str]:
"""プロジェクトファイルをスキャンしてハッシュ計算"""
current_state = {}
# 対象ファイル拡張子
target_extensions = {'.py', '.js', '.ts', '.rs', '.go', '.java', '.cpp', '.c', '.h'}
for file_path in self.project_root.rglob('*'):
if (file_path.is_file() and
file_path.suffix in target_extensions and
not any(part.startswith('.') for part in file_path.parts)):
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
file_hash = hashlib.md5(content.encode()).hexdigest()
relative_path = str(file_path.relative_to(self.project_root))
current_state[relative_path] = file_hash
except Exception:
continue
return current_state
def detect_changes(self) -> Dict[str, str]:
"""ファイル変更を検出"""
current_state = self.scan_project_files()
changes = {}
# 新規・変更ファイル
for path, current_hash in current_state.items():
if path not in self.files_state or self.files_state[path] != current_hash:
changes[path] = "modified" if path in self.files_state else "added"
# 削除ファイル
for path in self.files_state:
if path not in current_state:
changes[path] = "deleted"
self.files_state = current_state
return changes
class ContinuousDeveloper:
"""Claude Code的な継続開発機能"""
def __init__(self, project_root: Path, ai_provider: Optional[AIProvider] = None):
self.project_root = project_root
self.ai_provider = ai_provider
self.project_state = ProjectState(project_root)
self.session_memory: List[str] = []
def load_project_context(self) -> str:
"""プロジェクト文脈を読み込み"""
context_files = [
"claude.md", "aishell.md", "README.md",
"pyproject.toml", "package.json", "Cargo.toml"
]
context_parts = []
for filename in context_files:
file_path = self.project_root / filename
if file_path.exists():
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
context_parts.append(f"## {filename}\n{content}")
except Exception:
continue
return "\n\n".join(context_parts)
def analyze_project_structure(self) -> Dict[str, Any]:
"""プロジェクト構造を分析"""
analysis = {
"language": self._detect_primary_language(),
"framework": self._detect_framework(),
"structure": self._analyze_file_structure(),
"dependencies": self._analyze_dependencies(),
"patterns": self._detect_code_patterns()
}
return analysis
def _detect_primary_language(self) -> str:
"""主要言語を検出"""
file_counts = {}
for file_path in self.project_root.rglob('*'):
if file_path.is_file() and file_path.suffix:
ext = file_path.suffix.lower()
file_counts[ext] = file_counts.get(ext, 0) + 1
language_map = {
'.py': 'Python',
'.js': 'JavaScript',
'.ts': 'TypeScript',
'.rs': 'Rust',
'.go': 'Go',
'.java': 'Java'
}
if file_counts:
primary_ext = max(file_counts.items(), key=lambda x: x[1])[0]
return language_map.get(primary_ext, 'Unknown')
return 'Unknown'
def _detect_framework(self) -> str:
"""フレームワークを検出"""
frameworks = {
'fastapi': ['fastapi', 'uvicorn'],
'django': ['django'],
'flask': ['flask'],
'react': ['react'],
'next.js': ['next'],
'rust-actix': ['actix-web'],
}
# pyproject.toml, package.json, Cargo.tomlから依存関係を確認
for config_file in ['pyproject.toml', 'package.json', 'Cargo.toml']:
config_path = self.project_root / config_file
if config_path.exists():
try:
with open(config_path, 'r') as f:
content = f.read().lower()
for framework, keywords in frameworks.items():
if any(keyword in content for keyword in keywords):
return framework
except Exception:
continue
return 'Unknown'
def _analyze_file_structure(self) -> Dict[str, List[str]]:
"""ファイル構造を分析"""
structure = {"directories": [], "key_files": []}
for item in self.project_root.iterdir():
if item.is_dir() and not item.name.startswith('.'):
structure["directories"].append(item.name)
elif item.is_file() and item.name in [
'main.py', 'app.py', 'index.js', 'main.rs', 'main.go'
]:
structure["key_files"].append(item.name)
return structure
def _analyze_dependencies(self) -> List[str]:
"""依存関係を分析"""
deps = []
# Python dependencies
pyproject = self.project_root / "pyproject.toml"
if pyproject.exists():
try:
with open(pyproject, 'r') as f:
content = f.read()
# Simple regex would be better but for now just check for common packages
common_packages = ['fastapi', 'pydantic', 'uvicorn', 'ollama', 'openai']
for package in common_packages:
if package in content:
deps.append(package)
except Exception:
pass
return deps
def _detect_code_patterns(self) -> Dict[str, int]:
"""コードパターンを検出"""
patterns = {
"classes": 0,
"functions": 0,
"api_endpoints": 0,
"async_functions": 0
}
for py_file in self.project_root.rglob('*.py'):
try:
with open(py_file, 'r', encoding='utf-8') as f:
content = f.read()
patterns["classes"] += content.count('class ')
patterns["functions"] += content.count('def ')
patterns["api_endpoints"] += content.count('@app.')
patterns["async_functions"] += content.count('async def')
except Exception:
continue
return patterns
def suggest_next_steps(self, current_task: Optional[str] = None) -> List[str]:
"""次のステップを提案"""
if not self.ai_provider:
return ["AI provider not available for suggestions"]
context = self.load_project_context()
analysis = self.analyze_project_structure()
changes = self.project_state.detect_changes()
prompt = f"""
プロジェクト分析に基づいて次の開発ステップを3-5個提案してください
## プロジェクト文脈
{context[:1000]}
## 構造分析
言語: {analysis['language']}
フレームワーク: {analysis['framework']}
パターン: {analysis['patterns']}
## 最近の変更
{changes}
## 現在のタスク
{current_task or "特になし"}
具体的で実行可能なステップを提案してください
"""
try:
response = self.ai_provider.chat(prompt, max_tokens=300)
# Simple parsing - in real implementation would be more sophisticated
steps = [line.strip() for line in response.split('\n')
if line.strip() and (line.strip().startswith('-') or line.strip().startswith('1.'))]
return steps[:5]
except Exception as e:
return [f"Error generating suggestions: {str(e)}"]
def generate_code(self, description: str, file_path: Optional[str] = None) -> str:
"""コード生成"""
if not self.ai_provider:
return "AI provider not available for code generation"
context = self.load_project_context()
analysis = self.analyze_project_structure()
prompt = f"""
以下の仕様に基づいてコードを生成してください
## プロジェクト文脈
{context[:800]}
## 言語・フレームワーク
言語: {analysis['language']}
フレームワーク: {analysis['framework']}
既存パターン: {analysis['patterns']}
## 生成要求
{description}
{"ファイルパス: " + file_path if file_path else ""}
プロジェクトの既存コードスタイルと一貫性を保ったコードを生成してください
"""
try:
return self.ai_provider.chat(prompt, max_tokens=500)
except Exception as e:
return f"Error generating code: {str(e)}"
def analyze_file(self, file_path: str) -> str:
"""ファイル分析"""
full_path = self.project_root / file_path
if not full_path.exists():
return f"File not found: {file_path}"
try:
with open(full_path, 'r', encoding='utf-8') as f:
content = f.read()
except Exception as e:
return f"Error reading file: {str(e)}"
if not self.ai_provider:
return f"File contents ({len(content)} chars):\n{content[:200]}..."
context = self.load_project_context()
prompt = f"""
以下のファイルを分析して改善点や問題点を指摘してください
## プロジェクト文脈
{context[:500]}
## ファイル: {file_path}
{content[:1500]}
分析内容:
1. コード品質
2. プロジェクトとの整合性
3. 改善提案
4. 潜在的な問題
"""
try:
return self.ai_provider.chat(prompt, max_tokens=400)
except Exception as e:
return f"Error analyzing file: {str(e)}"