Updated README.md and ARCHITECTURE.md to reflect current implementation status. All three layers are now complete and functional. Changes: - README.md: Added Layer 2 (AI Memory) and Layer 3 (Big Five) features - README.md: Added MCP tools list and usage examples - README.md: Added Big Five personality traits explanation - ARCHITECTURE.md: Updated Layer 2 and 3 status to Complete - ARCHITECTURE.md: Updated implementation strategy phases - Archived old documentation in docs/archive/old-versions/ Current status: - Layer 1 ✅ Complete: Pure memory storage - Layer 2 ✅ Complete: AI interpretation + priority scoring - Layer 3 ✅ Complete: Big Five personality analysis - Layer 4 🔵 Planned: Game systems and companion features - Layer 5 🔵 Future: Distribution and sharing
9.9 KiB
9.9 KiB
Architecture: Multi-Layer Memory System
Design Philosophy
aigptは、独立したレイヤーを積み重ねる設計です。各レイヤーは:
- 独立性: 単独で動作可能
- 接続性: 他のレイヤーと連携可能
- 段階的: 1つずつ実装・テスト
Layer Overview
┌─────────────────────────────────────────┐
│ Layer 5: Distribution & Sharing │ 🔵 Future
│ (Game streaming, public/private) │
├─────────────────────────────────────────┤
│ Layer 4b: AI Companion │ 🔵 Planned
│ (Romance system, personality growth) │
├─────────────────────────────────────────┤
│ Layer 4a: Game Systems │ 🔵 Planned
│ (Ranking, rarity, XP, visualization) │
├─────────────────────────────────────────┤
│ Layer 3: User Evaluation │ ✅ Complete
│ (Big Five personality analysis) │
├─────────────────────────────────────────┤
│ Layer 2: AI Memory │ ✅ Complete
│ (Claude interpretation, priority_score)│
├─────────────────────────────────────────┤
│ Layer 1: Pure Memory Storage │ ✅ Complete
│ (SQLite, ULID, CRUD operations) │
└─────────────────────────────────────────┘
Layer 1: Pure Memory Storage
Status: ✅ Complete
Purpose
正確なデータの保存と参照。シンプルで信頼できる基盤。
Technology Stack
- Database: SQLite with ACID guarantees
- IDs: ULID (time-sortable, 26 chars)
- Language: Rust with thiserror/anyhow
- Protocol: MCP (Model Context Protocol) via stdio
Data Model
pub struct Memory {
pub id: String, // ULID
pub content: String, // User content
pub created_at: DateTime<Utc>,
pub updated_at: DateTime<Utc>,
}
Operations
create()- Insert new memoryget(id)- Retrieve by IDupdate()- Update existing memorydelete(id)- Remove memorylist()- List all (sorted by created_at DESC)search(query)- Content-based searchcount()- Total count
File Structure
src/
├── core/
│ ├── error.rs - Error types (thiserror)
│ ├── memory.rs - Memory struct
│ ├── store.rs - SQLite operations
│ └── mod.rs - Module exports
├── mcp/
│ ├── base.rs - MCP server
│ └── mod.rs - Module exports
├── lib.rs - Library root
└── main.rs - CLI application
Storage
- Location:
~/.config/syui/ai/gpt/memory.db - Schema: Single table with indexes on timestamps
- No migrations (fresh start for Layer 1)
Layer 2: AI Memory
Status: ✅ Complete
Purpose
Claudeが記憶内容を解釈し、重要度を評価。人間の記憶プロセス(記憶と同時に評価)を模倣。
Extended Data Model
pub struct Memory {
// Layer 1 fields
pub id: String,
pub content: String,
pub created_at: DateTime<Utc>,
pub updated_at: DateTime<Utc>,
// Layer 2 additions
pub ai_interpretation: Option<String>, // Claude's interpretation
pub priority_score: Option<f32>, // 0.0 - 1.0
}
MCP Tools
create_ai_memory- Create memory with AI interpretation and priority scorecontent: Memory contentai_interpretation: Optional AI interpretationpriority_score: Optional priority (0.0-1.0)
Philosophy
"AIは進化しますが、ツールは進化しません" - AIが判断し、ツールは記録のみ。
Implementation
- Backward compatible with Layer 1 (Optional fields)
- Automatic schema migration from Layer 1
- Claude Code does interpretation (no external API)
Layer 3: User Evaluation
Status: ✅ Complete
Purpose
Layer 2のメモリパターンからユーザーの性格を分析。Big Five心理学モデルを使用。
Data Model
pub struct UserAnalysis {
pub id: String,
pub openness: f32, // 0.0-1.0: 創造性、好奇心
pub conscientiousness: f32, // 0.0-1.0: 計画性、信頼性
pub extraversion: f32, // 0.0-1.0: 外向性、社交性
pub agreeableness: f32, // 0.0-1.0: 協調性、共感性
pub neuroticism: f32, // 0.0-1.0: 神経質さ(低い=安定)
pub summary: String, // 分析サマリー
pub analyzed_at: DateTime<Utc>,
}
Big Five Model
心理学で最も信頼性の高い性格モデル(OCEAN):
- Openness: 新しい経験への開かれさ
- Conscientiousness: 誠実性、計画性
- Extraversion: 外向性
- Agreeableness: 協調性
- Neuroticism: 神経質さ
Analysis Process
- Layer 2メモリを蓄積
- AIがパターンを分析(活動の種類、優先度の傾向など)
- Big Fiveスコアを推測
- 分析結果を保存
MCP Tools
save_user_analysis- Save Big Five personality analysis- All 5 traits (0.0-1.0) + summary
get_user_analysis- Get latest personality profile
Storage
- SQLite table:
user_analyses - Historical tracking: Compare analyses over time
- Helper methods:
dominant_trait(),is_high()
Layer 4a: Game Systems
Status: 🔵 Planned
Purpose
ゲーム的要素で記憶管理を楽しく。
Features
- Rarity Levels: Common → Uncommon → Rare → Epic → Legendary
- XP System: Memory creation earns XP
- Rankings: Based on total priority score
- Visualization: Game-style output formatting
Data Additions
pub struct GameMemory {
// Previous layers...
pub rarity: RarityLevel,
pub xp_value: u32,
pub discovered_at: DateTime<Utc>,
}
Layer 4b: AI Companion
Status: 🔵 Planned
Purpose
育成可能な恋愛コンパニオン。
Features
- Personality types (Tsundere, Kuudere, Genki, etc.)
- Relationship level (0-100)
- Memory-based interactions
- Growth through conversations
Data Model
pub struct Companion {
pub id: String,
pub name: String,
pub personality: CompanionPersonality,
pub relationship_level: u8, // 0-100
pub memories_shared: Vec<String>,
pub last_interaction: DateTime<Utc>,
}
Layer 5: Distribution (Future)
Status: 🔵 Future Consideration
Purpose
ゲーム配信や共有機能。
Ideas
- Share memory rankings
- Export as shareable format
- Public/private memory modes
- Integration with streaming platforms
Implementation Strategy
Phase 1: Layer 1 ✅ (Complete)
- Core memory storage
- SQLite integration
- MCP server
- CLI interface
- Tests
- Documentation
Phase 2: Layer 2 ✅ (Complete)
- Add AI interpretation fields to schema
- Implement priority scoring logic
- Create
create_ai_memorytool - Update MCP server
- Automatic schema migration
- Backward compatibility
Phase 3: Layer 3 ✅ (Complete)
- Big Five personality model
- UserAnalysis data structure
- user_analyses table
save_user_analysistoolget_user_analysistool- Historical tracking support
Phase 4: Layers 4-5 (Next)
- Game mechanics (Layer 4a)
- Companion system (Layer 4b)
- Sharing mechanisms (Layer 5)
- Public/private modes (Layer 5)
Design Principles
- Simplicity First: Each layer adds complexity incrementally
- Backward Compatibility: New layers don't break old ones
- Feature Flags: Optional features via Cargo features
- Independent Testing: Each layer has its own test suite
- Clear Boundaries: Layers communicate through defined interfaces
Technology Choices
Why SQLite?
- ACID guarantees
- Better querying than JSON
- Built-in indexes
- Single-file deployment
- No server needed
Why ULID?
- Time-sortable (unlike UUID v4)
- Lexicographically sortable
- 26 characters (compact)
- No collision concerns
Why Rust?
- Memory safety
- Performance
- Excellent error handling
- Strong type system
- Great tooling (cargo, clippy)
Why MCP?
- Standard protocol for AI tools
- Works with Claude Code/Desktop
- Simple stdio-based communication
- No complex networking
Future Considerations
Potential Enhancements
- Full-text search (SQLite FTS5)
- Tag system
- Memory relationships/links
- Export/import functionality
- Multiple databases
- Encryption for sensitive data
Scalability
- Layer 1: Handles 10K+ memories easily
- Consider pagination for Layer 4 (UI display)
- Indexing strategy for search performance
Development Guidelines
Adding a New Layer
- Design: Document data model and operations
- Feature Flag: Add to Cargo.toml
- Schema: Extend database schema (migrations)
- Implementation: Write code in new module
- Tests: Comprehensive test coverage
- MCP Tools: Add new MCP tools if needed
- Documentation: Update this file
Code Organization
src/
├── core/ # Layer 1: Pure storage
├── ai/ # Layer 2: AI features (future)
├── evaluation/ # Layer 3: User diagnosis (future)
├── game/ # Layer 4a: Game systems (future)
├── companion/ # Layer 4b: Companion (future)
└── mcp/ # MCP server (all layers)
Version: 0.2.0 Last Updated: 2025-11-06 Current Status: Layers 1-3 Complete, Layer 4 Planned