57 lines
1.8 KiB
Python
57 lines
1.8 KiB
Python
# server.py
|
|
from fastapi import FastAPI, Body
|
|
from fastapi_mcp import FastApiMCP
|
|
from pydantic import BaseModel
|
|
from memory_store import save_message, load_logs, search_memory as do_search_memory
|
|
|
|
app = FastAPI()
|
|
mcp = FastApiMCP(app, name="aigpt-agent", description="MCP Server for AI memory")
|
|
|
|
class ChatInput(BaseModel):
|
|
message: str
|
|
|
|
class MemoryInput(BaseModel):
|
|
sender: str
|
|
message: str
|
|
|
|
class MemoryQuery(BaseModel):
|
|
query: str
|
|
|
|
@app.post("/chat", operation_id="chat")
|
|
async def chat(input: ChatInput):
|
|
save_message("user", input.message)
|
|
response = f"AI: 「{input.message}」を受け取りました!"
|
|
save_message("ai", response)
|
|
return {"response": response}
|
|
|
|
@app.post("/memory", operation_id="save_memory")
|
|
async def memory_post(input: MemoryInput):
|
|
save_message(input.sender, input.message)
|
|
return {"status": "saved"}
|
|
|
|
@app.get("/memory", operation_id="get_memory")
|
|
async def memory_get():
|
|
return {"messages": load_messages()}
|
|
|
|
@app.post("/ask_message", operation_id="ask_message")
|
|
async def ask_message(input: MemoryQuery):
|
|
results = search_memory(input.query)
|
|
return {
|
|
"response": f"🔎 記憶から {len(results)} 件ヒット:\n" + "\n".join([f"{r['sender']}: {r['message']}" for r in results])
|
|
}
|
|
|
|
@app.post("/memory/search", operation_id="memory")
|
|
async def memory_search(query: MemoryQuery):
|
|
hits = do_search_memory(query.query)
|
|
if not hits:
|
|
return {"result": "🔍 記憶の中に該当する内容は見つかりませんでした。"}
|
|
summary = "\n".join([f"{e['sender']}: {e['message']}" for e in hits])
|
|
return {"result": f"🔎 見つかった記憶:\n{summary}"}
|
|
|
|
mcp.mount()
|
|
|
|
if __name__ == "__main__":
|
|
import uvicorn
|
|
print("🚀 Starting MCP server...")
|
|
uvicorn.run(app, host="127.0.0.1", port=5000)
|