gpt/mcp/scripts/ask.py
2025-05-23 15:50:26 +09:00

181 lines
5.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

## scripts/ask.py
import sys
import json
import requests
from config import load_config
from datetime import datetime, timezone
def build_payload_openai(cfg, message: str):
return {
"model": cfg["model"],
"tools": [
{
"type": "function",
"function": {
"name": "ask_message",
"description": "過去の記憶を検索します",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "検索したい語句"
}
},
"required": ["query"]
}
}
}
],
"tool_choice": "auto",
"messages": [
{"role": "system", "content": "あなたは親しみやすいAIで、必要に応じて記憶から情報を検索して応答します。"},
{"role": "user", "content": message}
]
}
def build_payload_mcp(message: str):
return {
"tool": "ask_message", # MCPサーバー側で定義されたツール名
"input": {
"message": message
}
}
def build_payload_openai(cfg, message: str):
return {
"model": cfg["model"],
"messages": [
{"role": "system", "content": "あなたは思いやりのあるAIです。"},
{"role": "user", "content": message}
],
"temperature": 0.7
}
def call_mcp(cfg, message: str):
payload = build_payload_mcp(message)
headers = {"Content-Type": "application/json"}
response = requests.post(cfg["url"], headers=headers, json=payload)
response.raise_for_status()
return response.json().get("output", {}).get("response", "❓ 応答が取得できませんでした")
def call_openai(cfg, message: str):
tools = [
{
"type": "function",
"function": {
"name": "memory", # MCPツール名と一致させる
"description": "AIが記憶ログを参照するツールです",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "探している記憶に関するキーワードや質問"
}
},
"required": ["query"]
}
}
}
]
payload = {
"model": cfg["model"],
"messages": [
{"role": "system", "content": "あなたはAIで、必要に応じて記憶検索ツールmemoryを使って過去の会話を参照することができます。"},
{"role": "user", "content": message}
],
"temperature": 0.7,
"tool_choice": "auto", # AIが自律的にツールを選ぶ
"tools": tools
}
headers = {
"Authorization": f"Bearer {cfg['api_key']}",
"Content-Type": "application/json",
}
response = requests.post(cfg["url"], headers=headers, json=payload)
response.raise_for_status()
result = response.json()
# AIがtool_callしたかチェック
if "tool_calls" in result["choices"][0]["message"]:
tool_call = result["choices"][0]["message"]["tool_calls"][0]
if tool_call["function"]["name"] == "memory":
args = json.loads(tool_call["function"]["arguments"])
query = args.get("query", "")
# ここでMCP serverにPOSTする
memory_response = requests.post(
"http://127.0.0.1:5000/memory/search", # あらかじめ実装されたmemory検索用API
json={"query": query}
).json()
return f"[Memory Tool]: {memory_response.get('result', 'なし')}"
# 通常のテキスト応答
return result["choices"][0]["message"]["content"]
def call_ollama(cfg, message: str):
payload = {
"model": cfg["model"],
"prompt": message, # `prompt` → `message` にすべき(変数未定義エラー回避)
"stream": False
}
headers = {"Content-Type": "application/json"}
response = requests.post(cfg["url"], headers=headers, json=payload)
response.raise_for_status()
return response.json().get("response", "❌ 応答が取得できませんでした")
def main():
if len(sys.argv) < 2:
print("Usage: ask.py 'your message'")
return
message = sys.argv[1]
cfg = load_config()
print(f"🔍 使用プロバイダー: {cfg['provider']}")
try:
if cfg["provider"] == "openai":
response = call_openai(cfg, message)
elif cfg["provider"] == "mcp":
response = call_mcp(cfg, message)
elif cfg["provider"] == "ollama":
response = call_ollama(cfg, message)
else:
raise ValueError(f"未対応のプロバイダー: {cfg['provider']}")
print("💬 応答:")
print(response)
# ログ保存(オプション)
save_log(message, response)
except Exception as e:
print(f"❌ 実行エラー: {e}")
def save_log(user_msg, ai_msg):
from config import MEMORY_DIR
date_str = datetime.now().strftime("%Y-%m-%d")
path = MEMORY_DIR / f"{date_str}.json"
path.parent.mkdir(parents=True, exist_ok=True)
if path.exists():
with open(path, "r") as f:
logs = json.load(f)
else:
logs = []
now = datetime.now(timezone.utc).isoformat()
logs.append({"timestamp": now, "sender": "user", "message": user_msg})
logs.append({"timestamp": now, "sender": "ai", "message": ai_msg})
with open(path, "w") as f:
json.dump(logs, f, indent=2, ensure_ascii=False)
if __name__ == "__main__":
main()