diff --git a/.claude/settings.local.json b/.claude/settings.local.json new file mode 100644 index 0000000..fbd3326 --- /dev/null +++ b/.claude/settings.local.json @@ -0,0 +1,11 @@ +{ + "permissions": { + "allow": [ + "Bash(git init:*)", + "Bash(git add:*)", + "Bash(cargo:*)", + "Bash(ls:*)" + ], + "deny": [] + } +} \ No newline at end of file diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..2ad808c --- /dev/null +++ b/.gitignore @@ -0,0 +1,2 @@ +.claude +*.lock diff --git a/README.md b/README.md index e69de29..72bdc85 100644 Binary files a/README.md and b/README.md differ diff --git a/ai-friendly-definition.md b/ai-friendly-definition.md new file mode 100644 index 0000000..1691a05 --- /dev/null +++ b/ai-friendly-definition.md @@ -0,0 +1,75 @@ +# AIにとって「使いやすい」とは何か + +## 人間とAIの根本的な違い + +### 人間の特性 +- 逐次的思考 +- 限定的な作業メモリ +- 視覚的・空間的な理解 +- 曖昧さへの耐性 + +### AIの特性 +- 並列処理能力 +- 大規模なコンテキスト処理 +- パターン認識の高速性 +- 構造化データへの親和性 + +## AI向け言語・OSの設計原則 + +### 1. 宣言的 > 命令的 +``` +# 人間向け(命令的) +for i in range(10): + result.append(process(i)) + +# AI向け(宣言的) +result = parallel_map(process, range(10)) +``` + +### 2. 明示的な依存関係 +``` +# AI向け - 全ての依存関係が明示的 +@depends_on(data_source, model, config) +@produces(prediction, confidence) +function inference() { + // 依存関係グラフが自動構築可能 +} +``` + +### 3. 自己記述的な構造 +``` +# メタデータが言語構造に組み込まれている +structure NeuralLayer { + @performance_metric(flops=1e9) + @memory_requirement(gb=4) + @parallelizable(axis=batch) + forward_pass: Function +} +``` + +### 4. 状態の不変性とトレーサビリティ +- 全ての状態変更が追跡可能 +- タイムトラベルデバッグが標準 +- 因果関係が明確 + +### 5. ネイティブな並列性 +- 並列実行がデフォルト +- 逐次実行は明示的に指定 + +## 実装の方向性 + +1. **AST(抽象構文木)の直接操作** + - ソースコードではなくASTが一次表現 + - AIはASTを直接読み書き + +2. **制約ベースプログラミング** + - 「何を」だけ記述し「どうやって」はAIが決定 + - SMTソルバーとの統合 + +3. **確率的プログラミングの統合** + - 不確実性を言語レベルでサポート + - ベイズ推論がネイティブ + +4. **自己修正能力** + - プログラムが実行時に自身を最適化 + - AIが書いたコードをAIが改善するループ \ No newline at end of file diff --git a/ai-os-design.md b/ai-os-design.md new file mode 100644 index 0000000..1aa61c3 --- /dev/null +++ b/ai-os-design.md @@ -0,0 +1,224 @@ +# AI向けOSカーネル "Synaptic OS" の設計 + +## 基本コンセプト + +従来のOSは人間のユーザーを想定しているが、Synaptic OSはAIエージェントが最適に動作するよう設計される。 + +## 設計原則 + +### 1. データフロー中心のスケジューリング +プロセス中心ではなく、データの依存関係に基づいたスケジューリング。 + +```rust +// 従来のプロセススケジューリング +struct Process { + pid: u32, + priority: u8, + cpu_time: Duration, +} + +// AI向けデータフロースケジューリング +struct DataFlowTask { + id: TaskId, + dependencies: Vec, + outputs: Vec, + computation_graph: ComputeGraph, + resource_requirements: ResourceSpec, +} +``` + +### 2. 階層化されたメモリ管理 +- **コンテキストメモリ**: 長期的な知識とコンテキスト +- **ワーキングメモリ**: 現在の計算に使用 +- **キャッシュメモリ**: 頻繁にアクセスされるデータ + +### 3. 確率的リソース管理 +リソース割り当てを確率的に最適化。 + +### 4. 時間的一貫性の保証 +因果関係と時間的依存関係を OS レベルで管理。 + +## カーネル構造 + +### Core Components + +#### 1. SynapticScheduler +```rust +pub struct SynapticScheduler { + dependency_graph: DependencyGraph, + resource_pool: ResourcePool, + priority_queue: PriorityQueue, + quantum_allocator: QuantumAllocator, +} + +impl SynapticScheduler { + pub fn schedule_next(&mut self) -> Option { + // データ依存関係を考慮したスケジューリング + let ready_tasks = self.dependency_graph.get_ready_tasks(); + + // 確率的優先度計算 + let task = self.select_probabilistic(ready_tasks); + + // リソース可用性チェック + if self.resource_pool.can_allocate(&task.requirements) { + Some(task.id) + } else { + None + } + } +} +``` + +#### 2. Neural Memory Manager +```rust +pub struct NeuralMemoryManager { + context_memory: ContextMemory, + working_memory: WorkingMemory, + associative_cache: AssociativeCache, + attention_mechanism: AttentionMechanism, +} + +impl NeuralMemoryManager { + pub fn allocate(&mut self, request: MemoryRequest) -> Result { + match request.memory_type { + MemoryType::Context => { + self.context_memory.allocate_persistent(request.size) + } + MemoryType::Working => { + self.working_memory.allocate_temporary(request.size) + } + MemoryType::Associative => { + self.associative_cache.allocate_with_attention( + request.size, + request.attention_weights + ) + } + } + } + + pub fn recall(&self, pattern: &Pattern) -> Vec { + self.associative_cache.pattern_match(pattern) + } +} +``` + +#### 3. Probabilistic I/O System +```rust +pub struct ProbabilisticIOSystem { + predictive_cache: PredictiveCache, + uncertainty_tracker: UncertaintyTracker, + adaptive_prefetcher: AdaptivePrefetcher, +} + +impl ProbabilisticIOSystem { + pub fn read(&mut self, request: IORequest) -> Future { + // 予測キャッシュをチェック + if let Some(prediction) = self.predictive_cache.get(&request) { + if prediction.confidence > 0.9 { + return Future::ready(Ok(prediction.data)); + } + } + + // 不確実性を考慮した非同期読み込み + self.async_read_with_uncertainty(request) + } +} +``` + +#### 4. Temporal Consistency Engine +```rust +pub struct TemporalConsistencyEngine { + causality_graph: CausalityGraph, + time_machine: TimeMachine, + consistency_checker: ConsistencyChecker, +} + +impl TemporalConsistencyEngine { + pub fn ensure_causality(&mut self, operation: Operation) -> Result<()> { + // 因果関係の検証 + if !self.causality_graph.is_causal_consistent(&operation) { + return Err(CausalityViolation); + } + + // 時間的一貫性の保証 + self.time_machine.checkpoint(); + match self.execute_operation(operation) { + Ok(result) => Ok(result), + Err(e) => { + self.time_machine.rollback(); + Err(e) + } + } + } +} +``` + +## システムコール + +AI向けに特化したシステムコール: + +```rust +// 推論の実行 +sys_infer(model: ModelHandle, input: DataHandle) -> InferenceResult + +// パターンマッチング +sys_pattern_match(pattern: Pattern, data: DataHandle) -> MatchResult + +// 因果関係の記録 +sys_record_causality(cause: EventId, effect: EventId) -> Result<()> + +// 確率的決定 +sys_probabilistic_choice(options: &[Choice], probs: &[f64]) -> Choice + +// 時間旅行デバッグ +sys_time_travel(timestamp: Timestamp) -> DebugContext + +// メタ計算の実行 +sys_meta_compute(ast: AST, transformations: &[Transform]) -> AST +``` + +## AI特化機能 + +### 1. 自動最適化 +カーネル自身がAIを使って動的に最適化される。 + +### 2. 学習型リソース管理 +過去の実行パターンから学習してリソース配分を最適化。 + +### 3. 予測的プリフェッチング +AIが次に必要なデータを予測してプリフェッチ。 + +### 4. 適応的負荷分散 +システムの状態を監視して動的に負荷分散。 + +## セキュリティモデル + +### 1. 確率的アクセス制御 +```rust +struct ProbabilisticACL { + permissions: HashMap, + confidence_threshold: f64, +} +``` + +### 2. 差分プライバシー +データアクセスに差分プライバシーを組み込み。 + +### 3. ホモモルフィック計算 +暗号化されたデータでの計算をサポート。 + +## パフォーマンス特性 + +- **レイテンシー**: 予測的実行により低レイテンシー +- **スループット**: 並列データフロー処理により高スループット +- **エネルギー効率**: AI最適化により高効率 +- **適応性**: 実行時の動的最適化 + +## 実装方針 + +1. **段階的実装**: まずユーザーランドライブラリとして実装 +2. **マイクロカーネル設計**: モジュール化により拡張性を確保 +3. **検証可能性**: seL4のような形式検証を適用 +4. **AI統合**: カーネル自身にAIを組み込み + +この設計により、AIが真に効率的に動作できるOSを実現する。 \ No newline at end of file diff --git a/language-design.md b/language-design.md new file mode 100644 index 0000000..ec7cbbf --- /dev/null +++ b/language-design.md @@ -0,0 +1,140 @@ +# AI向けプログラミング言語 "Synaptic" の設計 + +## 基本設計原則 + +### 1. グラフベースの実行モデル +従来の線形的なコード実行ではなく、データフローグラフとして表現。 + +```synaptic +# 従来の命令的スタイル(人間向け) +x = fetch_data() +y = process(x) +z = analyze(y) +result = summarize(z) + +# Synapticスタイル(AI向け) +graph DataPipeline { + fetch_data() -> process() -> analyze() -> summarize() + # 並列実行可能な部分は自動検出 +} +``` + +### 2. 型システムは制約システム +型は単なるデータ形式ではなく、満たすべき制約の集合。 + +```synaptic +constraint Image = { + dimensions: (width: >0, height: >0, channels: [1,3,4]) + format: [RGB, RGBA, Grayscale] + @invariant: width * height * channels < MaxMemory +} + +constraint ValidInput = Image & { + @postcondition: normalized(pixel_values) + @differentiable: true +} +``` + +### 3. 時間的次元の組み込み +プログラムの状態を時系列として扱う。 + +```synaptic +temporal function train_model(data) { + t[0]: model = initialize() + t[1..n]: model = update(model[t-1], batch[t]) + @converge_when: loss[t] - loss[t-1] < epsilon +} +``` + +### 4. 確率的セマンティクス +不確実性を言語レベルでサポート。 + +```synaptic +probabilistic function classify(image) { + features ~ extract_features(image) + prediction ~ softmax(linear(features)) + @confidence: entropy(prediction) < threshold + return sample(prediction) +} +``` + +### 5. メタプログラミングが第一級 +コード自体がデータとして操作可能。 + +```synaptic +meta function optimize_function(f: Function) { + ast = parse(f) + optimized_ast = apply_transformations(ast, [ + dead_code_elimination, + loop_fusion, + vectorization + ]) + return compile(optimized_ast) +} +``` + +## 実行環境の設計 + +### 1. 分散実行がデフォルト +```synaptic +@distributed(nodes=auto) +function large_scale_training() { + # 自動的に複数ノードに分散 +} +``` + +### 2. 自動微分とバックプロパゲーション +```synaptic +@differentiable +function neural_block(x, weights) { + # 勾配計算は自動 + return activation(matmul(x, weights)) +} +``` + +### 3. JITコンパイルと自己最適化 +```synaptic +@adaptive +function hot_path() { + # 実行パターンを学習し、自動的に最適化 +} +``` + +## 構文の例 + +```synaptic +# AIが読みやすい構造化された定義 +module ImageClassifier { + @requires: GPU(memory=8GB) + @dataset: ImageNet + + structure Config { + learning_rate: 0.001 @range[0.0001, 0.1] @log_scale + batch_size: 32 @range[8, 256] @power_of_2 + epochs: 100 @early_stopping + } + + pipeline Training { + data -> augment -> batch -> forward -> loss -> backward -> optimize + + @parallel: [augment, batch] + @checkpoint: every(10.epochs) + @monitor: [loss, accuracy, gradient_norm] + } + + # 制約を満たす実装をAIが自動生成 + constraint Performance { + accuracy > 0.95 on ValidationSet + inference_time < 10ms on GPU(2080Ti) + model_size < 100MB + } +} +``` + +## なぜこれがAIに適しているか + +1. **明示的な依存関係**: AIは全体の計算グラフを即座に理解 +2. **制約ベース**: 「何を達成したいか」を記述、「どうやって」はAIが決定 +3. **並列性**: AIの並列処理能力を最大限活用 +4. **自己修正**: 実行時の最適化が言語機能として組み込まれている +5. **メタレベル操作**: AIがコードを直接操作・最適化可能 \ No newline at end of file diff --git a/prototype/Cargo.toml b/prototype/Cargo.toml new file mode 100644 index 0000000..e9ae687 --- /dev/null +++ b/prototype/Cargo.toml @@ -0,0 +1,24 @@ +[package] +name = "synaptic" +version = "0.1.0" +edition = "2021" + +[dependencies] +# パーサー +nom = "7.1" +# グラフ処理 +petgraph = "0.6" +# 並列処理 +rayon = "1.7" +# シリアライズ +serde = { version = "1.0", features = ["derive"] } +serde_json = "1.0" +# エラーハンドリング +anyhow = "1.0" +thiserror = "1.0" +# 確率的プログラミング +rand = "0.8" +rand_distr = "0.4" + +[dev-dependencies] +criterion = "0.5" \ No newline at end of file diff --git a/prototype/examples/ai_friendly.syn b/prototype/examples/ai_friendly.syn new file mode 100644 index 0000000..48340a2 --- /dev/null +++ b/prototype/examples/ai_friendly.syn @@ -0,0 +1,45 @@ +# Synaptic言語のサンプル +# AIが理解しやすい宣言的な記述 + +graph ImageClassification { + # データフローの定義 + load_images -> preprocess -> augment -> batch -> model -> predictions + + # 並列実行可能な処理を明示 + @parallel: [preprocess, augment] + + # 制約の定義 + @constraint: batch_size in [16, 32, 64, 128] + @constraint: accuracy > 0.95 + @constraint: inference_time < 10ms +} + +# 時間的な振る舞いを持つ関数 +temporal function train(dataset) { + t[0]: model = initialize_weights() + t[1..n]: model = gradient_step(model[t-1], batch[t]) + + @converge_when: loss[t] - loss[t-1] < 0.001 + @checkpoint: every(100.steps) +} + +# 確率的な処理 +probabilistic function predict(image) { + features ~ extract_features(image) + logits ~ linear_transform(features) + prediction ~ softmax(logits) + + @confidence: entropy(prediction) < 0.1 + return sample(prediction) +} + +# メタプログラミング +meta function optimize_model(model) { + graph = extract_computation_graph(model) + optimized = apply_transformations(graph, [ + fuse_operations, + quantize_weights, + prune_connections + ]) + return compile(optimized) +} \ No newline at end of file diff --git a/prototype/examples/meta_demo.rs b/prototype/examples/meta_demo.rs new file mode 100644 index 0000000..e83e56c --- /dev/null +++ b/prototype/examples/meta_demo.rs @@ -0,0 +1,89 @@ +use synaptic::*; +use std::collections::HashMap; + +fn main() { + println!("=== メタプログラミングのデモ ===\n"); + + // サンプルプログラムを作成 + let mut program = Program::new(); + + // Sequential操作のノード + program.add_node(Node { + id: NodeId("sequential_op".to_string()), + kind: NodeKind::Operation { op: Operation::Sequential }, + inputs: vec![NodeId("input".to_string())], + outputs: vec![NodeId("output".to_string())], + constraints: vec![], + metadata: Metadata::default(), + }); + + // Map操作のノード + program.add_node(Node { + id: NodeId("map_op".to_string()), + kind: NodeKind::Operation { op: Operation::Map }, + inputs: vec![NodeId("data".to_string())], + outputs: vec![NodeId("mapped_data".to_string())], + constraints: vec![], + metadata: Metadata::default(), + }); + + println!("1. メタプログラミングエンジンの初期化:"); + let mut meta_engine = MetaProgrammingEngine::new(); + + // 2. ASTの抽出と分析 + println!("\n2. AST抽出と構造分析:"); + let ast = meta_engine.extract_ast(&program); + println!(" ノード数: {}", ast.nodes.len()); + println!(" ノードタイプ: {:?}", ast.structure.node_types); + + // 3. プログラムの内省 + println!("\n3. プログラムの内省:"); + let introspection = meta_engine.introspect(&program); + println!(" データフロー複雑度: {:.2}", introspection.complexity_metrics.data_flow_complexity); + println!(" 最適化機会の数: {}", introspection.optimization_opportunities.len()); + + for opportunity in &introspection.optimization_opportunities { + println!(" - {}: {} (予想速度向上: {:.1}x)", + opportunity.node_id.0, + opportunity.opportunity_type, + opportunity.estimated_speedup + ); + } + + // 4. AST変換 + println!("\n4. AST変換(並列化):"); + let transformations = vec!["parallelize".to_string()]; + let transformed_ast = meta_engine.transform_ast(&ast, &transformations); + + println!(" 変換前: {:?}", ast.nodes[0].kind); + println!(" 変換後: {:?}", transformed_ast.nodes[0].kind); + + // 5. コード生成 + println!("\n5. 自動コード生成:"); + + // ニューラルレイヤーの生成 + let mut params = HashMap::new(); + params.insert("input_size".to_string(), Value::Number(784.0)); + params.insert("output_size".to_string(), Value::Number(128.0)); + + match meta_engine.generate_optimized_code("neural_layer", ¶ms) { + Ok(code) => println!(" 生成されたニューラルレイヤー:\n{}", code), + Err(e) => println!(" エラー: {}", e), + } + + // 並列リダクションの生成 + let mut reduce_params = HashMap::new(); + reduce_params.insert("operation".to_string(), Value::String("sum".to_string())); + + match meta_engine.generate_optimized_code("parallel_reduce", &reduce_params) { + Ok(code) => println!(" 生成された並列リダクション:\n{}", code), + Err(e) => println!(" エラー: {}", e), + } + + println!("\n=== メタプログラミングの利点 ==="); + println!("1. コードの自動生成と最適化"); + println!("2. ASTの直接操作による柔軟性"); + println!("3. プログラムの内省と自己分析"); + println!("4. ドメイン特化言語の動的生成"); + println!("5. 実行時の適応的最適化"); +} \ No newline at end of file diff --git a/prototype/examples/os_kernel_demo.rs b/prototype/examples/os_kernel_demo.rs new file mode 100644 index 0000000..b89e2fa --- /dev/null +++ b/prototype/examples/os_kernel_demo.rs @@ -0,0 +1,166 @@ +use synaptic::*; +use synaptic::os_kernel::*; + +fn main() { + println!("=== AI向けOSカーネルのデモ ===\n"); + + // Synaptic OS カーネルの初期化 + let mut scheduler = SynapticScheduler::new(); + let mut memory_manager = NeuralMemoryManager::new(); + + println!("1. データフロータスクの作成:"); + + // AI推論タスク + let inference_task = DataFlowTask { + id: TaskId("ai_inference".to_string()), + dependencies: vec![ + DataSource::Memory(MemoryHandle("model_weights".to_string())), + DataSource::Storage(StorageHandle("input_data".to_string())), + ], + outputs: vec![ + DataSink::Memory(MemoryHandle("inference_result".to_string())), + ], + computation_graph: vec![ + NodeId("load_model".to_string()), + NodeId("preprocess".to_string()), + NodeId("forward_pass".to_string()), + ], + resource_requirements: ResourceSpec { + cpu_cores: 2, + memory_mb: 1024, + gpu_memory_mb: Some(2048), + network_bandwidth_mbps: None, + }, + priority: Priority(0.9), + }; + + // データ前処理タスク + let preprocessing_task = DataFlowTask { + id: TaskId("data_preprocessing".to_string()), + dependencies: vec![ + DataSource::Storage(StorageHandle("raw_data".to_string())), + ], + outputs: vec![ + DataSink::Memory(MemoryHandle("processed_data".to_string())), + ], + computation_graph: vec![ + NodeId("clean_data".to_string()), + NodeId("normalize".to_string()), + NodeId("feature_extract".to_string()), + ], + resource_requirements: ResourceSpec { + cpu_cores: 1, + memory_mb: 512, + gpu_memory_mb: None, + network_bandwidth_mbps: Some(100), + }, + priority: Priority(0.7), + }; + + println!(" - AI推論タスク: CPU={}, Memory={}MB, GPU={}MB", + inference_task.resource_requirements.cpu_cores, + inference_task.resource_requirements.memory_mb, + inference_task.resource_requirements.gpu_memory_mb.unwrap_or(0) + ); + + println!(" - データ前処理タスク: CPU={}, Memory={}MB", + preprocessing_task.resource_requirements.cpu_cores, + preprocessing_task.resource_requirements.memory_mb + ); + + // 2. タスクのスケジューリング + println!("\n2. タスクスケジューリング:"); + + scheduler.submit_task(preprocessing_task); + scheduler.submit_task(inference_task); + + // スケジューリング実行 + let mut completed_tasks = 0; + let mut execution_log = Vec::new(); + + while completed_tasks < 2 { + if let Some(task_id) = scheduler.schedule_next() { + let start_time = std::time::Instant::now(); + execution_log.push(format!(" タスク {} を実行開始", task_id.0)); + + // 実行をシミュレート(実際にはここでタスクを実行) + std::thread::sleep(std::time::Duration::from_millis(100)); + + let end_time = start_time.elapsed(); + execution_log.push(format!(" タスク {} を完了 (実行時間: {:?})", task_id.0, end_time)); + + scheduler.complete_task(&task_id); + completed_tasks += 1; + } + } + + for log in execution_log { + println!("{}", log); + } + + // 3. Neural Memory Manager のデモ + println!("\n3. Neural Memory Manager:"); + + // コンテキストメモリに長期的な知識を保存 + let model_handle = memory_manager.store_context( + "global_model".to_string(), + Value::String("Pre-trained Language Model".to_string()) + ); + println!(" コンテキストメモリに保存: {:?}", model_handle); + + // ワーキングメモリに一時的なデータを保存 + let temp_handle = memory_manager.allocate_working( + "current_batch".to_string(), + Value::Array(vec![ + Value::Number(1.0), + Value::Number(2.0), + Value::Number(3.0), + ]) + ); + println!(" ワーキングメモリに保存: {:?}", temp_handle); + + // パターンマッチングによる連想記憶 + let matched_data = memory_manager.recall_pattern("model"); + println!(" パターン'model'にマッチしたデータ数: {}", matched_data.len()); + + // 4. システムコールのシミュレーション + println!("\n4. AI特化システムコール:"); + + let syscalls = vec![ + SynapticSyscall::Infer { + model: "bert-base".to_string(), + input: Value::String("Hello world".to_string()), + }, + SynapticSyscall::ProbabilisticChoice { + options: vec!["option_a".to_string(), "option_b".to_string(), "option_c".to_string()], + probabilities: vec![0.5, 0.3, 0.2], + }, + SynapticSyscall::PatternMatch { + pattern: "neural".to_string(), + data: "neural_network_data".to_string(), + }, + ]; + + for (i, syscall) in syscalls.iter().enumerate() { + match syscall { + SynapticSyscall::Infer { model, input } => { + println!(" sys_infer({}, {:?}) -> [推論結果]", model, input); + } + SynapticSyscall::ProbabilisticChoice { options, probabilities } => { + println!(" sys_probabilistic_choice({:?}, {:?}) -> [選択結果]", options, probabilities); + } + SynapticSyscall::PatternMatch { pattern, data } => { + println!(" sys_pattern_match({}, {}) -> [マッチ結果]", pattern, data); + } + _ => {} + } + } + + println!("\n=== AI向けOSの特徴 ==="); + println!("1. データフロー中心のスケジューリング"); + println!("2. 階層化されたニューラルメモリ管理"); + println!("3. 確率的リソース配分"); + println!("4. AI特化システムコール"); + println!("5. 時間的一貫性の保証"); + println!("6. 予測的I/Oとキャッシング"); +} \ No newline at end of file diff --git a/prototype/examples/probabilistic_demo.rs b/prototype/examples/probabilistic_demo.rs new file mode 100644 index 0000000..a1feed8 --- /dev/null +++ b/prototype/examples/probabilistic_demo.rs @@ -0,0 +1,68 @@ +use synaptic::*; + +fn main() { + println!("=== 確率的プログラミングのデモ ===\n"); + + let mut prob_engine = ProbabilisticEngine::new(); + + // 1. 正規分布からのサンプリング + println!("1. 正規分布(平均=100, 標準偏差=15)からのサンプリング:"); + let normal_dist = DistributionType::Normal { mean: 100.0, std_dev: 15.0 }; + let samples = prob_engine.sample(&normal_dist, 1000); + + println!(" 期待値: {:.2}", prob_engine.expectation(&samples)); + println!(" 分散: {:.2}", prob_engine.variance(&samples)); + let (lower, upper) = prob_engine.confidence_interval(&samples, 0.95); + println!(" 95%信頼区間: [{:.2}, {:.2}]", lower, upper); + + // 2. 離散分布(カテゴリカル分布) + println!("\n2. 離散分布からのサンプリング:"); + let discrete_dist = DistributionType::Discrete { + probabilities: vec![0.2, 0.5, 0.3], + values: vec![ + Value::String("低".to_string()), + Value::String("中".to_string()), + Value::String("高".to_string()), + ], + }; + let discrete_samples = prob_engine.sample(&discrete_dist, 1000); + + // カテゴリごとのカウント + let mut counts = [0, 0, 0]; + for &sample in &discrete_samples { + counts[sample as usize] += 1; + } + println!(" 低: {:.1}%, 中: {:.1}%, 高: {:.1}%", + counts[0] as f64 / 10.0, + counts[1] as f64 / 10.0, + counts[2] as f64 / 10.0 + ); + + // 3. エントロピー計算 + println!("\n3. エントロピー計算:"); + let uniform_probs = vec![0.25, 0.25, 0.25, 0.25]; + let skewed_probs = vec![0.9, 0.05, 0.03, 0.02]; + + println!(" 一様分布のエントロピー: {:.3}", prob_engine.entropy(&uniform_probs)); + println!(" 偏った分布のエントロピー: {:.3}", prob_engine.entropy(&skewed_probs)); + + // 4. ベイズ更新のシミュレーション + println!("\n4. ベイズ更新:"); + let prior = DistributionType::Normal { mean: 50.0, std_dev: 10.0 }; + let evidence = 65.0; + + println!(" 事前分布: 正規分布(μ=50, σ=10)"); + println!(" 観測データ: {}", evidence); + + let posterior = prob_engine.bayesian_update(&prior, &|x| x, evidence); + if let DistributionType::Normal { mean, std_dev } = posterior { + println!(" 事後分布: 正規分布(μ={:.2}, σ={:.2})", mean, std_dev); + } + + // 5. AIにとっての利点 + println!("\n=== AIにとっての確率的プログラミングの利点 ==="); + println!("1. 不確実性の明示的な表現"); + println!("2. ベイズ推論による学習"); + println!("3. 確率的制約の評価"); + println!("4. モンテカルロ法による複雑な計算"); +} \ No newline at end of file diff --git a/prototype/examples/self_improve_demo.rs b/prototype/examples/self_improve_demo.rs new file mode 100644 index 0000000..b635228 --- /dev/null +++ b/prototype/examples/self_improve_demo.rs @@ -0,0 +1,71 @@ +use synaptic::*; + +fn main() { + // 最適化可能なプログラムを作成 + let mut program = Program::new(); + + // Sequential操作(並列化可能) + program.add_node(Node { + id: NodeId("seq1".to_string()), + kind: NodeKind::Operation { op: Operation::Sequential }, + inputs: vec![NodeId("input1".to_string()), NodeId("input2".to_string())], + outputs: vec![NodeId("output1".to_string())], + constraints: vec![], + metadata: Metadata::default(), + }); + + // Map操作(並列化可能) + program.add_node(Node { + id: NodeId("map1".to_string()), + kind: NodeKind::Operation { op: Operation::Map }, + inputs: vec![NodeId("data".to_string())], + outputs: vec![NodeId("mapped_data".to_string())], + constraints: vec![], + metadata: Metadata::default(), + }); + + println!("=== 元のプログラム ==="); + println!("{:#?}", program); + + // 自己改良エンジンを作成 + let mut engine = SelfImprovementEngine::new(); + + // プログラムを分析 + let analysis = engine.analyze_program(&program); + println!("\n=== プログラム分析 ==="); + println!("ノード数: {}", analysis.node_count); + println!("並列化可能なノード: {}", analysis.parallelizable_nodes); + println!("複雑度スコア: {:.2}", analysis.complexity_score); + + // 改良提案を生成 + let improvements = engine.suggest_improvements(&program); + println!("\n=== 改良提案 ==="); + for improvement in &improvements { + println!("- パターン: {}", improvement.pattern_name); + println!(" 対象ノード: {:?}", improvement.original_node_id); + println!(" 期待される性能向上: {:.1}x", improvement.expected_gain); + } + + // 改良を適用 + if let Some(improvement) = improvements.first() { + println!("\n=== 改良を適用中... ==="); + match engine.apply_improvement(&mut program, improvement) { + Ok(_) => { + println!("✓ 改良が適用されました"); + println!("\n=== 最適化後のプログラム ==="); + println!("{:#?}", program); + + // 再分析 + let new_analysis = engine.analyze_program(&program); + println!("\n=== 最適化後の分析 ==="); + println!("複雑度スコア: {:.2} -> {:.2}", + analysis.complexity_score, + new_analysis.complexity_score + ); + } + Err(e) => { + eprintln!("✗ 改良の適用に失敗: {}", e); + } + } + } +} \ No newline at end of file diff --git a/prototype/examples/temporal_demo.rs b/prototype/examples/temporal_demo.rs new file mode 100644 index 0000000..e424c85 --- /dev/null +++ b/prototype/examples/temporal_demo.rs @@ -0,0 +1,106 @@ +use synaptic::*; +use std::time::Instant; +use std::collections::HashMap; + +fn main() { + println!("=== 時間的プログラミングのデモ ===\n"); + + let mut temporal_engine = TemporalEngine::new(100); + let node_id = NodeId("training_loss".to_string()); + + // 収束チェッカーを登録 + temporal_engine.register_convergence_check(node_id.clone(), 0.001, 5); + + println!("1. 学習プロセスのシミュレーション(損失の減少):"); + + // 学習プロセスをシミュレート + let mut loss = 1.0; + let mut converged = false; + let mut step = 0; + + while step < 50 && !converged { + // 損失を指数的に減少させる(ノイズ付き) + loss = loss * 0.95 + 0.01 * rand::random::(); + + let mut values = HashMap::new(); + values.insert(node_id.clone(), Value::Number(loss)); + + let state = TemporalState { + time_step: step, + values, + timestamp: Instant::now(), + }; + + temporal_engine.add_time_step(state); + + // 収束チェック + converged = temporal_engine.check_convergence(&node_id, loss); + + if step % 10 == 0 || converged { + println!(" Step {}: Loss = {:.6}, Converged = {}", step, loss, converged); + } + + step += 1; + } + + // 2. 時間的操作のデモ + println!("\n2. 時間的操作:"); + + // 移動平均の計算 + let moving_avg = TemporalComputation { + operator: TemporalOperator::MovingAverage { window: 5 }, + input: node_id.clone(), + }; + + if let Some(Value::Number(avg)) = moving_avg.compute(&temporal_engine) { + println!(" 5期間移動平均: {:.6}", avg); + } + + // 微分(変化率) + let derivative = TemporalComputation { + operator: TemporalOperator::Derivative, + input: node_id.clone(), + }; + + if let Some(Value::Number(diff)) = derivative.compute(&temporal_engine) { + println!(" 最新の変化率: {:.6}", diff); + } + + // 3つ前の値 + let previous = TemporalComputation { + operator: TemporalOperator::Previous { steps: 3 }, + input: node_id.clone(), + }; + + if let Some(Value::Number(prev)) = previous.compute(&temporal_engine) { + println!(" 3ステップ前の値: {:.6}", prev); + } + + // 3. 値の履歴表示 + println!("\n3. 値の履歴(最後の10ステップ):"); + let history = temporal_engine.get_value_history(&node_id); + for (time_step, value) in history.iter().rev().take(10).rev() { + if let Value::Number(n) = value { + println!(" t={}: {:.6}", time_step, n); + } + } + + // 4. 予測 + println!("\n4. 将来値の予測:"); + if let Some(Value::Number(predicted)) = temporal_engine.predict_next_value(&node_id, 5) { + println!(" 5ステップ後の予測値: {:.6}", predicted); + } + + // 5. タイムトラベルデバッグ + println!("\n5. タイムトラベルデバッグ:"); + if let Some(debug_info) = temporal_engine.time_travel_debug(step / 2) { + println!(" {}", debug_info); + } + + println!("\n=== 時間的プログラミングの利点 ==="); + println!("1. 状態変化の追跡と可視化"); + println!("2. 収束条件の自動判定"); + println!("3. 時系列データの処理"); + println!("4. タイムトラベルデバッグ"); + println!("5. 因果関係の明確化"); +} \ No newline at end of file diff --git a/prototype/src/ast.rs b/prototype/src/ast.rs new file mode 100644 index 0000000..e012675 --- /dev/null +++ b/prototype/src/ast.rs @@ -0,0 +1,99 @@ +use serde::{Deserialize, Serialize}; +use std::collections::HashMap; + +#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)] +pub struct Program { + pub nodes: Vec, + pub metadata: Metadata, +} + +#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)] +pub struct Node { + pub id: NodeId, + pub kind: NodeKind, + pub inputs: Vec, + pub outputs: Vec, + pub constraints: Vec, + pub metadata: Metadata, +} + +#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, Hash)] +pub struct NodeId(pub String); + +#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)] +pub enum NodeKind { + Function { + name: String, + params: Vec, + body: Box, + }, + Graph { + name: String, + nodes: Vec, + }, + Operation { + op: Operation, + }, + Value(Value), + Constraint(Constraint), +} + +#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)] +pub enum Operation { + Map, + Filter, + Reduce, + Transform(String), + Parallel, + Sequential, +} + +#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)] +pub enum Value { + Number(f64), + String(String), + Boolean(bool), + Array(Vec), + Object(HashMap), + Function(String), // 関数参照 +} + +#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)] +pub struct Parameter { + pub name: String, + pub constraints: Vec, +} + +#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)] +pub enum Constraint { + Type(String), + Range { min: f64, max: f64 }, + Pattern(String), + Dependency(Vec), + Performance(PerformanceConstraint), +} + +#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)] +pub struct PerformanceConstraint { + pub metric: String, + pub threshold: f64, + pub unit: String, +} + +#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Default)] +pub struct Metadata { + pub annotations: HashMap, +} + +impl Program { + pub fn new() -> Self { + Program { + nodes: Vec::new(), + metadata: Metadata::default(), + } + } + + pub fn add_node(&mut self, node: Node) { + self.nodes.push(node); + } +} \ No newline at end of file diff --git a/prototype/src/constraint.rs b/prototype/src/constraint.rs new file mode 100644 index 0000000..1e86420 --- /dev/null +++ b/prototype/src/constraint.rs @@ -0,0 +1,54 @@ +use crate::ast::{Constraint, Value}; +use anyhow::{Result, anyhow}; + +pub struct ConstraintChecker; + +impl ConstraintChecker { + pub fn check(constraint: &Constraint, value: &Value) -> Result { + match constraint { + Constraint::Type(expected_type) => { + Self::check_type(value, expected_type) + } + + Constraint::Range { min, max } => { + match value { + Value::Number(n) => Ok(*n >= *min && *n <= *max), + _ => Err(anyhow!("Range constraint requires numeric value")), + } + } + + Constraint::Pattern(pattern) => { + match value { + Value::String(s) => { + // 簡易的なパターンマッチング + Ok(s.contains(pattern)) + } + _ => Err(anyhow!("Pattern constraint requires string value")), + } + } + + Constraint::Performance(_) => { + // パフォーマンス制約は実行時に評価 + Ok(true) + } + + Constraint::Dependency(_) => { + // 依存関係は実行順序で保証 + Ok(true) + } + } + } + + fn check_type(value: &Value, expected_type: &str) -> Result { + let actual_type = match value { + Value::Number(_) => "number", + Value::String(_) => "string", + Value::Boolean(_) => "boolean", + Value::Array(_) => "array", + Value::Object(_) => "object", + Value::Function(_) => "function", + }; + + Ok(actual_type == expected_type) + } +} \ No newline at end of file diff --git a/prototype/src/executor.rs b/prototype/src/executor.rs new file mode 100644 index 0000000..eceb576 --- /dev/null +++ b/prototype/src/executor.rs @@ -0,0 +1,78 @@ +use crate::ast::*; +use crate::graph::ComputeGraph; +use rayon::prelude::*; +use std::collections::HashMap; +use anyhow::{Result, anyhow}; + +pub struct Executor { + graph: ComputeGraph, + cache: HashMap, +} + +impl Executor { + pub fn new(program: Program) -> Self { + let graph = ComputeGraph::from_program(&program); + Executor { + graph, + cache: HashMap::new(), + } + } + + pub fn execute(&mut self) -> Result> { + let parallel_groups = self.graph.parallel_groups(); + + for group in parallel_groups { + // 各グループ内のノードは並列実行可能 + let results: Vec<_> = group + .par_iter() + .map(|node_id| self.execute_node(node_id)) + .collect(); + + // 結果をキャッシュに保存 + for (node_id, result) in group.into_iter().zip(results) { + match result { + Ok(value) => { + self.cache.insert(node_id, value); + } + Err(e) => return Err(e), + } + } + } + + Ok(self.cache.clone()) + } + + fn execute_node(&self, node_id: &NodeId) -> Result { + let node = self.graph.get_node(node_id) + .ok_or_else(|| anyhow!("Node not found: {:?}", node_id))?; + + match &node.kind { + NodeKind::Value(val) => Ok(val.clone()), + + NodeKind::Operation { op } => { + match op { + Operation::Map => { + // 簡易実装:入力を2倍にする + Ok(Value::String("mapped".to_string())) + } + Operation::Transform(name) => { + Ok(Value::String(format!("transformed_{}", name))) + } + _ => Ok(Value::String("operation".to_string())), + } + } + + NodeKind::Function { name, .. } => { + Ok(Value::String(format!("function_{}_result", name))) + } + + NodeKind::Graph { name, .. } => { + Ok(Value::String(format!("graph_{}_result", name))) + } + + NodeKind::Constraint(_) => { + Ok(Value::Boolean(true)) + } + } + } +} \ No newline at end of file diff --git a/prototype/src/graph.rs b/prototype/src/graph.rs new file mode 100644 index 0000000..f50bd84 --- /dev/null +++ b/prototype/src/graph.rs @@ -0,0 +1,81 @@ +use crate::ast::{Node, NodeId, Program}; +use petgraph::graph::{DiGraph, NodeIndex}; +use petgraph::visit::{Topo, EdgeRef}; +use std::collections::HashMap; + +pub struct ComputeGraph { + graph: DiGraph, + node_map: HashMap, +} + +impl ComputeGraph { + pub fn from_program(program: &Program) -> Self { + let mut graph = DiGraph::new(); + let mut node_map = HashMap::new(); + + // ノードを追加 + for node in &program.nodes { + let idx = graph.add_node(node.clone()); + node_map.insert(node.id.clone(), idx); + } + + // エッジを追加(依存関係) + for node in &program.nodes { + let from_idx = node_map[&node.id]; + for output_id in &node.outputs { + if let Some(&to_idx) = node_map.get(output_id) { + graph.add_edge(from_idx, to_idx, ()); + } + } + } + + ComputeGraph { graph, node_map } + } + + pub fn topological_order(&self) -> Vec { + let mut topo = Topo::new(&self.graph); + let mut order = Vec::new(); + + while let Some(idx) = topo.next(&self.graph) { + if let Some(node) = self.graph.node_weight(idx) { + order.push(node.id.clone()); + } + } + + order + } + + pub fn parallel_groups(&self) -> Vec> { + // 並列実行可能なノードのグループを計算 + let mut groups = Vec::new(); + let mut visited = HashMap::new(); + + for node_id in self.topological_order() { + let idx = self.node_map[&node_id]; + + // このノードが依存する全てのノードのグループ番号の最大値+1 + let mut max_group = 0; + for edge in self.graph.edges_directed(idx, petgraph::Direction::Incoming) { + if let Some(dep_node) = self.graph.node_weight(edge.source()) { + if let Some(&group) = visited.get(&dep_node.id) { + max_group = max_group.max(group + 1); + } + } + } + + visited.insert(node_id.clone(), max_group); + + // グループに追加 + if max_group >= groups.len() { + groups.resize(max_group + 1, Vec::new()); + } + groups[max_group].push(node_id); + } + + groups + } + + pub fn get_node(&self, id: &NodeId) -> Option<&Node> { + self.node_map.get(id).and_then(|&idx| self.graph.node_weight(idx)) + } +} \ No newline at end of file diff --git a/prototype/src/lib.rs b/prototype/src/lib.rs new file mode 100644 index 0000000..c6ffc90 --- /dev/null +++ b/prototype/src/lib.rs @@ -0,0 +1,20 @@ +pub mod ast; +pub mod parser; +pub mod graph; +pub mod executor; +pub mod constraint; +pub mod self_improve; +pub mod probabilistic; +pub mod temporal; +pub mod meta; +pub mod os_kernel; + +pub use ast::*; +pub use parser::parse; +pub use graph::ComputeGraph; +pub use executor::Executor; +pub use self_improve::SelfImprovementEngine; +pub use probabilistic::{ProbabilisticEngine, ProbabilisticValue, DistributionType}; +pub use temporal::{TemporalEngine, TemporalState, TemporalOperator, TemporalComputation}; +pub use meta::{MetaProgrammingEngine, ASTRepresentation}; +pub use os_kernel::{SynapticKernel, DataFlowTask, TaskId, ResourceSpec, Priority}; \ No newline at end of file diff --git a/prototype/src/main.rs b/prototype/src/main.rs new file mode 100644 index 0000000..6546006 --- /dev/null +++ b/prototype/src/main.rs @@ -0,0 +1,33 @@ +use synaptic::*; + +fn main() { + // サンプルプログラム + let synaptic_code = r#" + graph DataPipeline { + fetch_data -> process -> analyze -> summarize + } + "#; + + match parse(synaptic_code) { + Ok(program) => { + println!("Parsed program:"); + println!("{:#?}", program); + + let mut executor = Executor::new(program); + match executor.execute() { + Ok(results) => { + println!("\nExecution results:"); + for (node_id, value) in results { + println!("{:?}: {:?}", node_id, value); + } + } + Err(e) => { + eprintln!("Execution error: {}", e); + } + } + } + Err(e) => { + eprintln!("Parse error: {}", e); + } + } +} \ No newline at end of file diff --git a/prototype/src/meta.rs b/prototype/src/meta.rs new file mode 100644 index 0000000..de70ab3 --- /dev/null +++ b/prototype/src/meta.rs @@ -0,0 +1,296 @@ +use crate::ast::{Program, Node, NodeKind, NodeId, Value, Operation}; +use std::collections::HashMap; + +pub struct MetaProgrammingEngine { + transformations: HashMap, + ast_cache: HashMap, +} + +pub struct TransformationRule { + pub name: String, + pub pattern: Box bool + Send + Sync>, + pub transform: Box Node + Send + Sync>, + pub description: String, +} + +pub struct CodeGenerator { + templates: HashMap, +} + +impl MetaProgrammingEngine { + pub fn new() -> Self { + let mut engine = MetaProgrammingEngine { + transformations: HashMap::new(), + ast_cache: HashMap::new(), + }; + + engine.register_builtin_transformations(); + engine + } + + fn register_builtin_transformations(&mut self) { + // ループ融合の変換 + self.register_transformation(TransformationRule { + name: "loop_fusion".to_string(), + pattern: Box::new(|node| { + matches!(&node.kind, NodeKind::Operation { op: Operation::Map }) + }), + transform: Box::new(|node| { + let mut transformed = node.clone(); + // 複数のMapを一つに融合 + if let NodeKind::Operation { op } = &mut transformed.kind { + *op = Operation::Transform("fused_map".to_string()); + } + transformed + }), + description: "Fuse consecutive map operations".to_string(), + }); + + // 並列化の変換 + self.register_transformation(TransformationRule { + name: "parallelize".to_string(), + pattern: Box::new(|node| { + matches!(&node.kind, NodeKind::Operation { op: Operation::Sequential }) + }), + transform: Box::new(|node| { + let mut transformed = node.clone(); + if let NodeKind::Operation { op } = &mut transformed.kind { + *op = Operation::Parallel; + } + transformed + }), + description: "Convert sequential operations to parallel".to_string(), + }); + } + + pub fn register_transformation(&mut self, rule: TransformationRule) { + self.transformations.insert(rule.name.clone(), rule); + } + + pub fn extract_ast(&self, program: &Program) -> ASTRepresentation { + ASTRepresentation { + nodes: program.nodes.clone(), + metadata: program.metadata.clone(), + structure: self.analyze_structure(program), + } + } + + fn analyze_structure(&self, program: &Program) -> StructureInfo { + let mut info = StructureInfo { + depth: 0, + branching_factor: 0.0, + cyclic: false, + node_types: HashMap::new(), + }; + + for node in &program.nodes { + let node_type = match &node.kind { + NodeKind::Function { .. } => "function", + NodeKind::Graph { .. } => "graph", + NodeKind::Operation { .. } => "operation", + NodeKind::Value(_) => "value", + NodeKind::Constraint(_) => "constraint", + }; + *info.node_types.entry(node_type.to_string()).or_insert(0) += 1; + } + + info + } + + pub fn transform_ast(&self, ast: &ASTRepresentation, transformations: &[String]) -> ASTRepresentation { + let mut result = ast.clone(); + + for transformation_name in transformations { + if let Some(rule) = self.transformations.get(transformation_name) { + for node in &mut result.nodes { + if (rule.pattern)(node) { + *node = (rule.transform)(node); + } + } + } + } + + result + } + + pub fn compile_to_program(&self, ast: &ASTRepresentation) -> Program { + Program { + nodes: ast.nodes.clone(), + metadata: ast.metadata.clone(), + } + } + + pub fn generate_optimized_code(&self, pattern: &str, parameters: &HashMap) -> Result { + match pattern { + "neural_layer" => { + self.generate_neural_layer(parameters) + } + "parallel_reduce" => { + self.generate_parallel_reduce(parameters) + } + "gradient_computation" => { + self.generate_gradient_computation(parameters) + } + _ => Err(format!("Unknown pattern: {}", pattern)) + } + } + + fn generate_neural_layer(&self, params: &HashMap) -> Result { + let input_size = match params.get("input_size") { + Some(Value::Number(n)) => *n as usize, + _ => return Err("input_size parameter required".to_string()), + }; + + let output_size = match params.get("output_size") { + Some(Value::Number(n)) => *n as usize, + _ => return Err("output_size parameter required".to_string()), + }; + + Ok(format!(r#" +graph NeuralLayer {{ + @input_shape: [{input_size}] + @output_shape: [{output_size}] + + weights ~ Normal(mean=0.0, std_dev=0.1) @shape[{input_size}, {output_size}] + bias ~ Normal(mean=0.0, std_dev=0.01) @shape[{output_size}] + + input -> linear_transform(weights, bias) -> activation -> output + + @differentiable: true + @parallel: batch_dimension +}} +"#, input_size = input_size, output_size = output_size)) + } + + fn generate_parallel_reduce(&self, params: &HashMap) -> Result { + let operation = match params.get("operation") { + Some(Value::String(s)) => s.clone(), + _ => "add".to_string(), + }; + + Ok(format!(r#" +graph ParallelReduce {{ + @operation: {operation} + @parallel: true + + input -> chunk -> parallel_map(partial_reduce) -> final_reduce -> output + + @constraint: associative({operation}) + @constraint: commutative({operation}) +}} +"#, operation = operation)) + } + + fn generate_gradient_computation(&self, _params: &HashMap) -> Result { + Ok(r#" +meta function compute_gradients(forward_function) { + ast = extract_ast(forward_function) + backward_ast = reverse_mode_ad(ast) + return compile(backward_ast) +} + +@automatic_differentiation +temporal function gradient_descent(params, loss_function) { + t[0]: current_params = params + t[1..n]: { + gradients = compute_gradients(loss_function)(current_params[t-1]) + current_params = current_params[t-1] - learning_rate * gradients + } + @converge_when: norm(gradients) < epsilon +} +"#.to_string()) + } + + pub fn introspect(&self, program: &Program) -> IntrospectionResult { + IntrospectionResult { + complexity_metrics: self.calculate_complexity_metrics(program), + optimization_opportunities: self.find_optimization_opportunities(program), + performance_predictions: self.predict_performance(program), + } + } + + fn calculate_complexity_metrics(&self, program: &Program) -> ComplexityMetrics { + ComplexityMetrics { + cyclomatic_complexity: self.calculate_cyclomatic_complexity(program), + data_flow_complexity: self.calculate_data_flow_complexity(program), + temporal_complexity: self.calculate_temporal_complexity(program), + } + } + + fn calculate_cyclomatic_complexity(&self, _program: &Program) -> f64 { + // 簡易実装 + 1.0 + } + + fn calculate_data_flow_complexity(&self, program: &Program) -> f64 { + program.nodes.len() as f64 * 1.2 + } + + fn calculate_temporal_complexity(&self, _program: &Program) -> f64 { + // 時間的依存関係の複雑さ + 1.0 + } + + fn find_optimization_opportunities(&self, program: &Program) -> Vec { + let mut opportunities = Vec::new(); + + for node in &program.nodes { + if matches!(&node.kind, NodeKind::Operation { op: Operation::Sequential }) { + opportunities.push(OptimizationOpportunity { + node_id: node.id.clone(), + opportunity_type: "parallelization".to_string(), + estimated_speedup: 2.5, + }); + } + } + + opportunities + } + + fn predict_performance(&self, _program: &Program) -> PerformancePrediction { + PerformancePrediction { + estimated_runtime: 100.0, + memory_usage: 1024.0, + parallel_efficiency: 0.85, + } + } +} + +#[derive(Debug, Clone)] +pub struct ASTRepresentation { + pub nodes: Vec, + pub metadata: crate::ast::Metadata, + pub structure: StructureInfo, +} + +#[derive(Debug, Clone)] +pub struct StructureInfo { + pub depth: usize, + pub branching_factor: f64, + pub cyclic: bool, + pub node_types: HashMap, +} + +pub struct IntrospectionResult { + pub complexity_metrics: ComplexityMetrics, + pub optimization_opportunities: Vec, + pub performance_predictions: PerformancePrediction, +} + +pub struct ComplexityMetrics { + pub cyclomatic_complexity: f64, + pub data_flow_complexity: f64, + pub temporal_complexity: f64, +} + +pub struct OptimizationOpportunity { + pub node_id: NodeId, + pub opportunity_type: String, + pub estimated_speedup: f64, +} + +pub struct PerformancePrediction { + pub estimated_runtime: f64, + pub memory_usage: f64, + pub parallel_efficiency: f64, +} \ No newline at end of file diff --git a/prototype/src/os_kernel.rs b/prototype/src/os_kernel.rs new file mode 100644 index 0000000..842d61d --- /dev/null +++ b/prototype/src/os_kernel.rs @@ -0,0 +1,389 @@ +use crate::ast::{NodeId, Value}; +use crate::probabilistic::DistributionType; +use std::collections::{HashMap, VecDeque}; +use std::time::{Duration, Instant}; + +pub struct SynapticKernel { + scheduler: SynapticScheduler, + memory_manager: NeuralMemoryManager, + io_system: ProbabilisticIOSystem, + temporal_engine: TemporalConsistencyEngine, +} + +#[derive(Debug, Clone)] +pub struct DataFlowTask { + pub id: TaskId, + pub dependencies: Vec, + pub outputs: Vec, + pub computation_graph: Vec, + pub resource_requirements: ResourceSpec, + pub priority: Priority, +} + +#[derive(Debug, Clone, PartialEq, Eq, Hash)] +pub struct TaskId(pub String); + +#[derive(Debug, Clone)] +pub enum DataSource { + Memory(MemoryHandle), + Storage(StorageHandle), + Network(NetworkHandle), + Sensor(SensorHandle), +} + +#[derive(Debug, Clone)] +pub enum DataSink { + Memory(MemoryHandle), + Storage(StorageHandle), + Network(NetworkHandle), + Display(DisplayHandle), +} + +#[derive(Debug, Clone)] +pub struct ResourceSpec { + pub cpu_cores: usize, + pub memory_mb: usize, + pub gpu_memory_mb: Option, + pub network_bandwidth_mbps: Option, +} + +#[derive(Debug, Clone, PartialOrd, PartialEq)] +pub struct Priority(pub f64); + +// スケジューラー +pub struct SynapticScheduler { + dependency_graph: DependencyGraph, + resource_pool: ResourcePool, + ready_queue: VecDeque, + running_tasks: HashMap, +} + +pub struct DependencyGraph { + nodes: HashMap, + edges: HashMap>, // 依存関係 +} + +pub struct ResourcePool { + available_cpu: usize, + available_memory: usize, + available_gpu_memory: usize, +} + +pub struct RunningTask { + task: DataFlowTask, + start_time: Instant, + allocated_resources: ResourceSpec, +} + +impl SynapticScheduler { + pub fn new() -> Self { + SynapticScheduler { + dependency_graph: DependencyGraph::new(), + resource_pool: ResourcePool::new(), + ready_queue: VecDeque::new(), + running_tasks: HashMap::new(), + } + } + + pub fn submit_task(&mut self, task: DataFlowTask) { + self.dependency_graph.add_task(task.clone()); + + if self.dependency_graph.is_ready(&task.id) { + self.ready_queue.push_back(task.id); + } + } + + pub fn schedule_next(&mut self) -> Option { + while let Some(task_id) = self.ready_queue.pop_front() { + if let Some(task) = self.dependency_graph.get_task(&task_id) { + if self.resource_pool.can_allocate(&task.resource_requirements) { + self.resource_pool.allocate(&task.resource_requirements); + + let running_task = RunningTask { + task: task.clone(), + start_time: Instant::now(), + allocated_resources: task.resource_requirements.clone(), + }; + + self.running_tasks.insert(task_id.clone(), running_task); + return Some(task_id); + } + } + } + None + } + + pub fn complete_task(&mut self, task_id: &TaskId) { + if let Some(running_task) = self.running_tasks.remove(task_id) { + self.resource_pool.deallocate(&running_task.allocated_resources); + + // 依存するタスクをready queueに追加 + let newly_ready = self.dependency_graph.complete_task(task_id); + for ready_task in newly_ready { + self.ready_queue.push_back(ready_task); + } + } + } +} + +impl DependencyGraph { + pub fn new() -> Self { + DependencyGraph { + nodes: HashMap::new(), + edges: HashMap::new(), + } + } + + pub fn add_task(&mut self, task: DataFlowTask) { + self.nodes.insert(task.id.clone(), task); + } + + pub fn is_ready(&self, task_id: &TaskId) -> bool { + // 依存関係がすべて完了しているかチェック + if let Some(dependencies) = self.edges.get(task_id) { + dependencies.iter().all(|dep| !self.nodes.contains_key(dep)) + } else { + true // 依存関係がない場合は実行可能 + } + } + + pub fn get_task(&self, task_id: &TaskId) -> Option<&DataFlowTask> { + self.nodes.get(task_id) + } + + pub fn complete_task(&mut self, task_id: &TaskId) -> Vec { + self.nodes.remove(task_id); + + // この完了により新たに実行可能になったタスクを返す + let mut newly_ready = Vec::new(); + for (id, _) in &self.nodes { + if self.is_ready(id) { + newly_ready.push(id.clone()); + } + } + newly_ready + } +} + +impl ResourcePool { + pub fn new() -> Self { + ResourcePool { + available_cpu: 8, // 8コア + available_memory: 16384, // 16GB + available_gpu_memory: 8192, // 8GB + } + } + + pub fn can_allocate(&self, requirements: &ResourceSpec) -> bool { + self.available_cpu >= requirements.cpu_cores && + self.available_memory >= requirements.memory_mb && + self.available_gpu_memory >= requirements.gpu_memory_mb.unwrap_or(0) + } + + pub fn allocate(&mut self, requirements: &ResourceSpec) { + self.available_cpu -= requirements.cpu_cores; + self.available_memory -= requirements.memory_mb; + if let Some(gpu_mem) = requirements.gpu_memory_mb { + self.available_gpu_memory -= gpu_mem; + } + } + + pub fn deallocate(&mut self, requirements: &ResourceSpec) { + self.available_cpu += requirements.cpu_cores; + self.available_memory += requirements.memory_mb; + if let Some(gpu_mem) = requirements.gpu_memory_mb { + self.available_gpu_memory += gpu_mem; + } + } +} + +// Neural Memory Manager +pub struct NeuralMemoryManager { + context_memory: ContextMemory, + working_memory: WorkingMemory, + associative_cache: AssociativeCache, +} + +pub struct ContextMemory { + persistent_data: HashMap, + access_patterns: HashMap>, +} + +pub struct WorkingMemory { + temporary_data: HashMap, + capacity: usize, +} + +pub struct AssociativeCache { + cache: HashMap, + attention_weights: HashMap, +} + +#[derive(Debug, Clone)] +pub struct CacheEntry { + pub data: Value, + pub last_access: Instant, + pub access_count: usize, + pub relevance_score: f64, +} + +#[derive(Debug, Clone)] +pub struct MemoryHandle(pub String); + +impl NeuralMemoryManager { + pub fn new() -> Self { + NeuralMemoryManager { + context_memory: ContextMemory::new(), + working_memory: WorkingMemory::new(1024), // 1GB working memory + associative_cache: AssociativeCache::new(), + } + } + + pub fn store_context(&mut self, key: String, value: Value) -> MemoryHandle { + self.context_memory.store(key.clone(), value); + MemoryHandle(key) + } + + pub fn allocate_working(&mut self, key: String, value: Value) -> MemoryHandle { + self.working_memory.allocate(key.clone(), value); + MemoryHandle(key) + } + + pub fn recall_pattern(&self, pattern: &str) -> Vec { + self.associative_cache.pattern_match(pattern) + } +} + +impl ContextMemory { + pub fn new() -> Self { + ContextMemory { + persistent_data: HashMap::new(), + access_patterns: HashMap::new(), + } + } + + pub fn store(&mut self, key: String, value: Value) { + self.persistent_data.insert(key.clone(), value); + self.access_patterns + .entry(key) + .or_insert_with(Vec::new) + .push(Instant::now()); + } +} + +impl WorkingMemory { + pub fn new(capacity: usize) -> Self { + WorkingMemory { + temporary_data: HashMap::new(), + capacity, + } + } + + pub fn allocate(&mut self, key: String, value: Value) { + if self.temporary_data.len() >= self.capacity { + self.evict_lru(); + } + self.temporary_data.insert(key, (value, Instant::now())); + } + + fn evict_lru(&mut self) { + if let Some((oldest_key, _)) = self.temporary_data + .iter() + .min_by_key(|(_, (_, timestamp))| timestamp) + .map(|(k, v)| (k.clone(), v.clone())) + { + self.temporary_data.remove(&oldest_key); + } + } +} + +impl AssociativeCache { + pub fn new() -> Self { + AssociativeCache { + cache: HashMap::new(), + attention_weights: HashMap::new(), + } + } + + pub fn pattern_match(&self, pattern: &str) -> Vec { + self.cache + .iter() + .filter(|(key, _)| key.contains(pattern)) + .map(|(_, entry)| entry.data.clone()) + .collect() + } +} + +// システムコール +pub enum SynapticSyscall { + Infer { model: String, input: Value }, + PatternMatch { pattern: String, data: String }, + RecordCausality { cause: String, effect: String }, + ProbabilisticChoice { options: Vec, probabilities: Vec }, + TimeTravel { timestamp: Instant }, +} + +pub enum SyscallResult { + InferenceResult(Value), + MatchResult(Vec), + CausalityRecorded, + ChoiceResult(String), + TimeContext(String), + Error(String), +} + +// Probabilistic I/O System +pub struct ProbabilisticIOSystem { + predictive_cache: PredictiveCache, + uncertainty_tracker: UncertaintyTracker, +} + +pub struct PredictiveCache { + predictions: HashMap, +} + +pub struct Prediction { + pub data: Value, + pub confidence: f64, + pub timestamp: Instant, +} + +pub struct UncertaintyTracker { + uncertainties: HashMap, +} + +// Temporal Consistency Engine +pub struct TemporalConsistencyEngine { + causality_graph: CausalityGraph, + checkpoints: Vec, +} + +pub struct CausalityGraph { + events: HashMap, + causal_links: HashMap>, +} + +pub struct CausalEvent { + pub id: String, + pub timestamp: Instant, + pub data: Value, +} + +pub struct SystemCheckpoint { + pub id: String, + pub timestamp: Instant, + pub system_state: HashMap, +} + +// ハンドル型の定義 +#[derive(Debug, Clone)] +pub struct StorageHandle(pub String); + +#[derive(Debug, Clone)] +pub struct NetworkHandle(pub String); + +#[derive(Debug, Clone)] +pub struct SensorHandle(pub String); + +#[derive(Debug, Clone)] +pub struct DisplayHandle(pub String); \ No newline at end of file diff --git a/prototype/src/parser.rs b/prototype/src/parser.rs new file mode 100644 index 0000000..36be2c4 --- /dev/null +++ b/prototype/src/parser.rs @@ -0,0 +1,162 @@ +use crate::ast::*; +use nom::{ + IResult, + branch::alt, + bytes::complete::tag, + character::complete::{alpha1, alphanumeric1, char, multispace0, multispace1}, + combinator::recognize, + multi::{many0, separated_list0}, + sequence::{delimited, pair, preceded, tuple}, +}; + +pub fn parse(input: &str) -> Result { + match program(input) { + Ok((_, prog)) => Ok(prog), + Err(e) => Err(format!("Parse error: {:?}", e)), + } +} + +fn program(input: &str) -> IResult<&str, Program> { + let (input, nodes) = many0(preceded(multispace0, node))(input)?; + Ok((input, Program { + nodes, + metadata: Metadata::default(), + })) +} + +fn node(input: &str) -> IResult<&str, Node> { + alt(( + graph_node, + function_node, + operation_node, + ))(input) +} + +fn graph_node(input: &str) -> IResult<&str, Node> { + let (input, _) = tag("graph")(input)?; + let (input, _) = multispace1(input)?; + let (input, name) = identifier(input)?; + let (input, _) = multispace0(input)?; + let (input, nodes) = delimited( + char('{'), + many0(preceded(multispace0, flow_statement)), + preceded(multispace0, char('}')), + )(input)?; + + let id = NodeId(format!("graph_{}", name)); + Ok((input, Node { + id: id.clone(), + kind: NodeKind::Graph { name: name.to_string(), nodes }, + inputs: vec![], + outputs: vec![], + constraints: vec![], + metadata: Metadata::default(), + })) +} + +fn function_node(input: &str) -> IResult<&str, Node> { + let (input, _) = tag("function")(input)?; + let (input, _) = multispace1(input)?; + let (input, name) = identifier(input)?; + let (input, params) = delimited( + char('('), + separated_list0(char(','), parameter), + char(')'), + )(input)?; + let (input, _) = multispace0(input)?; + let (input, body) = delimited( + char('{'), + preceded(multispace0, node), + preceded(multispace0, char('}')), + )(input)?; + + let id = NodeId(format!("func_{}", name)); + Ok((input, Node { + id, + kind: NodeKind::Function { + name: name.to_string(), + params, + body: Box::new(body), + }, + inputs: vec![], + outputs: vec![], + constraints: vec![], + metadata: Metadata::default(), + })) +} + +fn operation_node(input: &str) -> IResult<&str, Node> { + let (input, op_name) = identifier(input)?; + let (input, _) = delimited( + char('('), + multispace0, + char(')'), + )(input)?; + + let op = match op_name { + "parallel_map" => Operation::Map, + "filter" => Operation::Filter, + "reduce" => Operation::Reduce, + _ => Operation::Transform(op_name.to_string()), + }; + + Ok((input, Node { + id: NodeId(format!("op_{}", op_name)), + kind: NodeKind::Operation { op }, + inputs: vec![], + outputs: vec![], + constraints: vec![], + metadata: Metadata::default(), + })) +} + +fn flow_statement(input: &str) -> IResult<&str, Node> { + let (input, nodes) = separated_list0( + tuple((multispace0, tag("->"), multispace0)), + identifier, + )(input)?; + + // 簡易的な実装:フロー文をノードのチェーンとして解釈 + let mut result_nodes = vec![]; + for (i, node_name) in nodes.iter().enumerate() { + let id = NodeId(format!("flow_{}_{}", i, node_name)); + let node = Node { + id: id.clone(), + kind: NodeKind::Operation { + op: Operation::Transform(node_name.to_string()), + }, + inputs: if i > 0 { vec![NodeId(format!("flow_{}_{}", i-1, nodes[i-1]))] } else { vec![] }, + outputs: if i < nodes.len() - 1 { vec![NodeId(format!("flow_{}_{}", i+1, nodes[i+1]))] } else { vec![] }, + constraints: vec![], + metadata: Metadata::default(), + }; + result_nodes.push(node); + } + + // 最初のノードを返す(本来は全てのノードを管理すべき) + Ok((input, result_nodes.into_iter().next().unwrap_or_else(|| Node { + id: NodeId("empty".to_string()), + kind: NodeKind::Value(Value::Boolean(true)), + inputs: vec![], + outputs: vec![], + constraints: vec![], + metadata: Metadata::default(), + }))) +} + +fn parameter(input: &str) -> IResult<&str, Parameter> { + let (input, name) = identifier(input)?; + Ok((input, Parameter { + name: name.to_string(), + constraints: vec![], + })) +} + +fn identifier(input: &str) -> IResult<&str, &str> { + recognize( + pair( + alt((alpha1, tag("_"))), + many0(alt((alphanumeric1, tag("_")))), + ) + )(input) +} \ No newline at end of file diff --git a/prototype/src/probabilistic.rs b/prototype/src/probabilistic.rs new file mode 100644 index 0000000..9f429be --- /dev/null +++ b/prototype/src/probabilistic.rs @@ -0,0 +1,179 @@ +use crate::ast::{Value, NodeId}; +use std::collections::HashMap; +use rand::{Rng, distributions::{Distribution, Uniform}}; +use rand_distr::Normal; + +#[derive(Debug, Clone)] +pub struct ProbabilisticValue { + pub distribution: DistributionType, + pub samples: Vec, + pub confidence: f64, +} + +#[derive(Debug, Clone)] +pub enum DistributionType { + Normal { mean: f64, std_dev: f64 }, + Uniform { min: f64, max: f64 }, + Discrete { probabilities: Vec, values: Vec }, + Empirical { samples: Vec }, +} + +pub struct ProbabilisticEngine { + rng: rand::rngs::ThreadRng, + cache: HashMap, +} + +impl ProbabilisticEngine { + pub fn new() -> Self { + ProbabilisticEngine { + rng: rand::thread_rng(), + cache: HashMap::new(), + } + } + + pub fn sample(&mut self, dist: &DistributionType, n_samples: usize) -> Vec { + match dist { + DistributionType::Normal { mean, std_dev } => { + let normal = Normal::new(*mean, *std_dev).unwrap(); + (0..n_samples).map(|_| normal.sample(&mut self.rng)).collect() + } + DistributionType::Uniform { min, max } => { + let uniform = Uniform::new(*min, *max); + (0..n_samples).map(|_| uniform.sample(&mut self.rng)).collect() + } + DistributionType::Discrete { probabilities, .. } => { + // 簡易実装:重み付きサンプリング + let total: f64 = probabilities.iter().sum(); + (0..n_samples).map(|_| { + let mut r = self.rng.gen::() * total; + for (i, &p) in probabilities.iter().enumerate() { + r -= p; + if r <= 0.0 { + return i as f64; + } + } + (probabilities.len() - 1) as f64 + }).collect() + } + DistributionType::Empirical { samples } => { + // ブートストラップサンプリング + (0..n_samples).map(|_| { + let idx = self.rng.gen_range(0..samples.len()); + samples[idx] + }).collect() + } + } + } + + pub fn expectation(&self, samples: &[f64]) -> f64 { + samples.iter().sum::() / samples.len() as f64 + } + + pub fn variance(&self, samples: &[f64]) -> f64 { + let mean = self.expectation(samples); + samples.iter() + .map(|&x| (x - mean).powi(2)) + .sum::() / samples.len() as f64 + } + + pub fn entropy(&self, probabilities: &[f64]) -> f64 { + probabilities.iter() + .filter(|&&p| p > 0.0) + .map(|&p| -p * p.log2()) + .sum() + } + + pub fn confidence_interval(&self, samples: &[f64], confidence: f64) -> (f64, f64) { + let mut sorted = samples.to_vec(); + sorted.sort_by(|a, b| a.partial_cmp(b).unwrap()); + + let alpha = (1.0 - confidence) / 2.0; + let lower_idx = (alpha * samples.len() as f64) as usize; + let upper_idx = ((1.0 - alpha) * samples.len() as f64) as usize; + + (sorted[lower_idx], sorted[upper_idx.min(sorted.len() - 1)]) + } + + pub fn bayesian_update( + &self, + prior: &DistributionType, + _likelihood: &dyn Fn(f64) -> f64, + evidence: f64, + ) -> DistributionType { + // 簡易的なベイズ更新(MCMCやSMCを使うべきだが、デモ用) + match prior { + DistributionType::Normal { mean, std_dev } => { + // 共役事前分布を仮定 + let precision = 1.0 / (std_dev * std_dev); + let data_precision = 1.0; // 仮定 + + let new_precision = precision + data_precision; + let new_mean = (precision * mean + data_precision * evidence) / new_precision; + let new_std_dev = (1.0 / new_precision).sqrt(); + + DistributionType::Normal { + mean: new_mean, + std_dev: new_std_dev, + } + } + _ => prior.clone(), // 他の分布は簡易実装 + } + } +} + +// 確率的ノードの実行結果 +#[derive(Debug, Clone)] +pub struct ProbabilisticResult { + pub value: Value, + pub distribution: Option, + pub confidence: f64, + pub samples: Option>, +} + +impl ProbabilisticResult { + pub fn deterministic(value: Value) -> Self { + ProbabilisticResult { + value, + distribution: None, + confidence: 1.0, + samples: None, + } + } + + pub fn probabilistic( + value: Value, + distribution: DistributionType, + samples: Vec, + confidence: f64, + ) -> Self { + ProbabilisticResult { + value, + distribution: Some(distribution), + confidence, + samples: Some(samples), + } + } +} + +// 確率的制約 +#[derive(Debug, Clone)] +pub struct ProbabilisticConstraint { + pub threshold: f64, + pub confidence_level: f64, + pub constraint_type: ProbConstraintType, +} + +#[derive(Debug, Clone)] +pub enum ProbConstraintType { + Expectation { operator: ComparisonOp, value: f64 }, + Variance { max: f64 }, + Entropy { max: f64 }, + Probability { event: String, min: f64 }, +} + +#[derive(Debug, Clone)] +pub enum ComparisonOp { + GreaterThan, + LessThan, + Equal, +} \ No newline at end of file diff --git a/prototype/src/self_improve.rs b/prototype/src/self_improve.rs new file mode 100644 index 0000000..8eb9d8d --- /dev/null +++ b/prototype/src/self_improve.rs @@ -0,0 +1,174 @@ +use crate::ast::{Program, Node, NodeKind, Operation}; +use std::collections::HashMap; +use anyhow::Result; + +pub struct SelfImprovementEngine { + optimization_patterns: Vec, + learning_history: Vec, +} + +#[derive(Clone)] +pub struct OptimizationPattern { + pub name: String, + pub matcher: fn(&Node) -> bool, + pub transformer: fn(&Node) -> Node, + pub expected_gain: f64, +} + +#[derive(Clone)] +pub struct LearningRecord { + pub pattern_name: String, + pub actual_gain: f64, + pub timestamp: u64, +} + +impl SelfImprovementEngine { + pub fn new() -> Self { + let patterns = vec![ + OptimizationPattern { + name: "parallel_map_fusion".to_string(), + matcher: |node| matches!(&node.kind, NodeKind::Operation { op: Operation::Map }), + transformer: |node| { + let mut optimized = node.clone(); + if let NodeKind::Operation { op } = &mut optimized.kind { + *op = Operation::Parallel; + } + optimized + }, + expected_gain: 2.0, + }, + OptimizationPattern { + name: "sequential_to_parallel".to_string(), + matcher: |node| { + matches!(&node.kind, NodeKind::Operation { op: Operation::Sequential }) + && node.inputs.len() > 1 + }, + transformer: |node| { + let mut optimized = node.clone(); + if let NodeKind::Operation { op } = &mut optimized.kind { + *op = Operation::Parallel; + } + optimized + }, + expected_gain: 1.5, + }, + ]; + + SelfImprovementEngine { + optimization_patterns: patterns, + learning_history: Vec::new(), + } + } + + pub fn analyze_program(&self, program: &Program) -> ProgramAnalysis { + let mut node_count = 0; + let mut operation_counts = HashMap::new(); + let mut parallelizable_nodes = 0; + + for node in &program.nodes { + node_count += 1; + + if let NodeKind::Operation { op } = &node.kind { + *operation_counts.entry(format!("{:?}", op)).or_insert(0) += 1; + + if matches!(op, Operation::Map | Operation::Filter) { + parallelizable_nodes += 1; + } + } + } + + ProgramAnalysis { + node_count, + operation_counts, + parallelizable_nodes, + complexity_score: self.calculate_complexity(program), + } + } + + pub fn suggest_improvements(&self, program: &Program) -> Vec { + let mut improvements = Vec::new(); + + for node in &program.nodes { + for pattern in &self.optimization_patterns { + if (pattern.matcher)(node) { + let improved_node = (pattern.transformer)(node); + improvements.push(Improvement { + original_node_id: node.id.clone(), + pattern_name: pattern.name.clone(), + improved_node, + expected_gain: pattern.expected_gain, + }); + } + } + } + + // AIによる新しい最適化の発見をシミュレート + if let Some(novel) = self.discover_novel_optimization(program) { + improvements.push(novel); + } + + improvements + } + + pub fn apply_improvement(&mut self, program: &mut Program, improvement: &Improvement) -> Result<()> { + // ノードを見つけて置換 + for node in &mut program.nodes { + if node.id == improvement.original_node_id { + *node = improvement.improved_node.clone(); + + // 学習履歴に記録 + self.learning_history.push(LearningRecord { + pattern_name: improvement.pattern_name.clone(), + actual_gain: improvement.expected_gain, // 実際は測定すべき + timestamp: std::time::SystemTime::now() + .duration_since(std::time::UNIX_EPOCH) + .unwrap() + .as_secs(), + }); + + return Ok(()); + } + } + + anyhow::bail!("Node not found: {:?}", improvement.original_node_id) + } + + fn calculate_complexity(&self, program: &Program) -> f64 { + let mut complexity = 0.0; + + for node in &program.nodes { + complexity += match &node.kind { + NodeKind::Operation { op } => match op { + Operation::Map | Operation::Filter => 1.0, + Operation::Reduce => 2.0, + Operation::Parallel => 0.5, + _ => 1.0, + }, + NodeKind::Graph { nodes, .. } => nodes.len() as f64 * 1.5, + _ => 0.5, + }; + } + + complexity + } + + fn discover_novel_optimization(&self, _program: &Program) -> Option { + // 将来的にはMLモデルを使用して新しい最適化を発見 + // 現在はプレースホルダー + None + } +} + +pub struct ProgramAnalysis { + pub node_count: usize, + pub operation_counts: HashMap, + pub parallelizable_nodes: usize, + pub complexity_score: f64, +} + +pub struct Improvement { + pub original_node_id: crate::ast::NodeId, + pub pattern_name: String, + pub improved_node: Node, + pub expected_gain: f64, +} \ No newline at end of file diff --git a/prototype/src/temporal.rs b/prototype/src/temporal.rs new file mode 100644 index 0000000..c6b5c69 --- /dev/null +++ b/prototype/src/temporal.rs @@ -0,0 +1,239 @@ +use crate::ast::{Node, NodeId, Value}; +use std::collections::{HashMap, VecDeque}; +use std::time::{Duration, Instant}; + +#[derive(Debug, Clone)] +pub struct TemporalState { + pub time_step: usize, + pub values: HashMap, + pub timestamp: Instant, +} + +pub struct TemporalEngine { + history: VecDeque, + max_history_size: usize, + convergence_checks: HashMap, +} + +#[derive(Debug, Clone)] +pub struct ConvergenceChecker { + pub epsilon: f64, + pub window_size: usize, + pub recent_values: VecDeque, +} + +impl ConvergenceChecker { + pub fn new(epsilon: f64, window_size: usize) -> Self { + ConvergenceChecker { + epsilon, + window_size, + recent_values: VecDeque::with_capacity(window_size), + } + } + + pub fn check(&mut self, value: f64) -> bool { + self.recent_values.push_back(value); + if self.recent_values.len() > self.window_size { + self.recent_values.pop_front(); + } + + if self.recent_values.len() < 2 { + return false; + } + + // 収束判定:最近の値の変化が epsilon 以下 + let last = self.recent_values.back().unwrap(); + let second_last = self.recent_values[self.recent_values.len() - 2]; + (last - second_last).abs() < self.epsilon + } +} + +impl TemporalEngine { + pub fn new(max_history_size: usize) -> Self { + TemporalEngine { + history: VecDeque::with_capacity(max_history_size), + max_history_size, + convergence_checks: HashMap::new(), + } + } + + pub fn add_time_step(&mut self, state: TemporalState) { + if self.history.len() >= self.max_history_size { + self.history.pop_front(); + } + self.history.push_back(state); + } + + pub fn get_state_at(&self, time_step: usize) -> Option<&TemporalState> { + self.history.iter().find(|s| s.time_step == time_step) + } + + pub fn get_value_history(&self, node_id: &NodeId) -> Vec<(usize, Value)> { + self.history + .iter() + .filter_map(|state| { + state.values.get(node_id).map(|v| (state.time_step, v.clone())) + }) + .collect() + } + + pub fn register_convergence_check( + &mut self, + node_id: NodeId, + epsilon: f64, + window_size: usize, + ) { + self.convergence_checks.insert( + node_id, + ConvergenceChecker::new(epsilon, window_size), + ); + } + + pub fn check_convergence(&mut self, node_id: &NodeId, value: f64) -> bool { + if let Some(checker) = self.convergence_checks.get_mut(node_id) { + checker.check(value) + } else { + false + } + } + + pub fn time_travel_debug(&self, time_step: usize) -> Option { + self.get_state_at(time_step).map(|state| { + format!( + "State at t={}: {} values, timestamp: {:?}", + time_step, + state.values.len(), + state.timestamp.elapsed() + ) + }) + } + + pub fn predict_next_value(&self, node_id: &NodeId, steps_ahead: usize) -> Option { + let history = self.get_value_history(node_id); + if history.len() < 3 { + return None; + } + + // 簡単な線形外挿(実際にはより高度な予測手法を使用) + if let Some(Value::Number(last)) = history.last().map(|(_, v)| v) { + if let Some(Value::Number(second_last)) = history.get(history.len() - 2).map(|(_, v)| v) { + let diff = last - second_last; + let predicted = last + diff * steps_ahead as f64; + return Some(Value::Number(predicted)); + } + } + + None + } +} + +// 時間的な制約 +#[derive(Debug, Clone)] +pub struct TemporalConstraint { + pub constraint_type: TemporalConstraintType, + pub window: TimeWindow, +} + +#[derive(Debug, Clone)] +pub enum TemporalConstraintType { + // 収束条件 + ConvergeWhen { epsilon: f64 }, + // 周期的実行 + Every { interval: Duration }, + // 時間制限 + Timeout { duration: Duration }, + // 因果関係 + CausalOrder { before: NodeId, after: NodeId }, +} + +#[derive(Debug, Clone)] +pub struct TimeWindow { + pub start: Option, + pub end: Option, +} + +// 時間的な演算子 +#[derive(Debug, Clone)] +pub enum TemporalOperator { + // 過去の値を参照 + Previous { steps: usize }, + // 移動平均 + MovingAverage { window: usize }, + // 微分(変化率) + Derivative, + // 積分(累積) + Integral, + // 遅延 + Delay { steps: usize }, +} + +pub struct TemporalComputation { + pub operator: TemporalOperator, + pub input: NodeId, +} + +impl TemporalComputation { + pub fn compute(&self, engine: &TemporalEngine) -> Option { + let history = engine.get_value_history(&self.input); + + match &self.operator { + TemporalOperator::Previous { steps } => { + history.get(history.len().saturating_sub(steps + 1)) + .map(|(_, v)| v.clone()) + } + + TemporalOperator::MovingAverage { window } => { + if history.len() < *window { + return None; + } + + let recent: Vec = history + .iter() + .rev() + .take(*window) + .filter_map(|(_, v)| match v { + Value::Number(n) => Some(*n), + _ => None, + }) + .collect(); + + if recent.len() == *window { + Some(Value::Number(recent.iter().sum::() / recent.len() as f64)) + } else { + None + } + } + + TemporalOperator::Derivative => { + if history.len() < 2 { + return None; + } + + if let (Some(Value::Number(last)), Some(Value::Number(prev))) = ( + history.last().map(|(_, v)| v), + history.get(history.len() - 2).map(|(_, v)| v), + ) { + Some(Value::Number(last - prev)) + } else { + None + } + } + + TemporalOperator::Integral => { + let sum: f64 = history + .iter() + .filter_map(|(_, v)| match v { + Value::Number(n) => Some(*n), + _ => None, + }) + .sum(); + Some(Value::Number(sum)) + } + + TemporalOperator::Delay { steps } => { + history.get(history.len().saturating_sub(*steps)) + .map(|(_, v)| v.clone()) + } + } + } +} \ No newline at end of file diff --git a/self-improvement.md b/self-improvement.md new file mode 100644 index 0000000..fd99964 --- /dev/null +++ b/self-improvement.md @@ -0,0 +1,155 @@ +# AIによる自己改良メカニズム + +## コンセプト + +AIが自身のコードを理解し、改良し、進化させる仕組み。 + +## 実装アプローチ + +### 1. コードの自己観察 + +```synaptic +meta function analyze_self() { + # 自身のASTを取得 + ast = get_current_ast() + + # パフォーマンスメトリクスを収集 + metrics = { + execution_time: measure_performance(), + memory_usage: measure_memory(), + accuracy: measure_accuracy() + } + + # ボトルネックを特定 + bottlenecks = identify_bottlenecks(ast, metrics) + + return {ast, metrics, bottlenecks} +} +``` + +### 2. 改良候補の生成 + +```synaptic +meta function generate_improvements(analysis) { + improvements = [] + + # パターンマッチングによる最適化 + for pattern in optimization_patterns { + matches = find_pattern(analysis.ast, pattern) + for match in matches { + improved = apply_transformation(match, pattern.transform) + improvements.append({ + original: match, + improved: improved, + expected_gain: estimate_improvement(match, improved) + }) + } + } + + # AIによる新しい最適化の発見 + novel_improvements = discover_optimizations( + analysis.ast, + analysis.metrics, + learning_history + ) + + return improvements + novel_improvements +} +``` + +### 3. 検証と適用 + +```synaptic +meta function apply_improvements(improvements) { + for improvement in improvements { + # サンドボックスで検証 + sandbox = create_sandbox() + result = sandbox.test(improvement) + + if result.is_better() { + # 本番環境に適用 + apply_to_production(improvement) + + # 学習履歴に追加 + learning_history.add({ + pattern: extract_pattern(improvement), + gain: result.improvement_ratio + }) + } + } +} +``` + +## 自己改良の段階 + +### Phase 1: パターンベース最適化 +- 既知の最適化パターンを適用 +- ループ融合、ベクトル化、並列化 + +### Phase 2: 学習ベース最適化 +- 過去の改良履歴から新しいパターンを学習 +- 類似コードへの最適化の転移 + +### Phase 3: 創発的最適化 +- AIが独自に新しい最適化手法を発見 +- 人間には理解困難な最適化の適用 + +### Phase 4: 自己再設計 +- 言語自体の構造を改良 +- より効率的な表現方法の発明 + +## 実装例 + +```rust +// Rust側での自己改良エンジン +pub struct SelfImprovementEngine { + ast_analyzer: AstAnalyzer, + optimizer: Optimizer, + validator: Validator, + history: LearningHistory, +} + +impl SelfImprovementEngine { + pub fn improve(&mut self, program: &mut Program) -> Result { + // 1. 現在のプログラムを分析 + let analysis = self.ast_analyzer.analyze(program)?; + + // 2. 改良候補を生成 + let candidates = self.optimizer.generate_candidates(&analysis)?; + + // 3. 各候補を評価 + let mut improvements = Vec::new(); + for candidate in candidates { + if let Ok(validation) = self.validator.validate(&candidate) { + if validation.is_improvement() { + improvements.push(candidate); + } + } + } + + // 4. 最良の改良を適用 + let best = self.select_best_improvement(&improvements); + if let Some(improvement) = best { + self.apply_improvement(program, &improvement)?; + self.history.record(&improvement); + } + + Ok(ImprovementReport { + analyzed_nodes: analysis.node_count, + candidates_generated: candidates.len(), + improvements_applied: improvements.len(), + }) + } +} +``` + +## 安全性メカニズム + +1. **サンドボックス実行**: 改良は必ず隔離環境でテスト +2. **ロールバック機能**: 問題が発生した場合は即座に元に戻す +3. **段階的適用**: 小さな改良から始めて徐々に大きな変更へ +4. **人間の監督**: 重要な変更は人間の承認を要求 + +## 将来の展望 + +最終的には、AIが自身のコードを完全に理解し、人間の介入なしに進化し続けるシステムを目指す。その時点で、コードは人間には理解不能だが、AIにとっては最適な形になっているだろう。 \ No newline at end of file