1
0
shell/docs/mcp-server-local-llm.py
2025-05-31 01:47:48 +09:00

392 lines
13 KiB
Python

#!/usr/bin/env python3
"""
Local LLM MCP Server for Claude Code Integration
Claude Code → MCP Server → Local LLM (Qwen2.5-Coder)
"""
import asyncio
import json
import logging
import requests
import subprocess
import os
from pathlib import Path
from typing import Dict, List, Any, Optional
from mcp.server import Server
from mcp.types import (
Tool,
TextContent,
Resource,
PromptMessage,
GetPromptResult
)
# ログ設定
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("local-llm-mcp")
class LocalLLMServer:
def __init__(self, model: str = "qwen2.5-coder:14b-instruct-q4_K_M"):
self.model = model
self.ollama_url = "http://localhost:11434"
self.conversation_history = []
def call_ollama(self, prompt: str, system_prompt: str = "") -> str:
"""Ollamaにリクエストを送信"""
try:
full_prompt = f"{system_prompt}\n\nUser: {prompt}\nAssistant:"
response = requests.post(
f"{self.ollama_url}/api/generate",
json={
"model": self.model,
"prompt": full_prompt,
"stream": False,
"options": {
"temperature": 0.1,
"top_p": 0.95,
"num_predict": 2048,
"stop": ["User:", "Human:"]
}
},
timeout=60
)
if response.status_code == 200:
return response.json()["response"].strip()
else:
return f"Error: {response.status_code} - {response.text}"
except Exception as e:
logger.error(f"Ollama call failed: {e}")
return f"Connection error: {e}"
def get_project_context(self) -> str:
"""現在のプロジェクトの情報を取得"""
context = []
# 現在のディレクトリ
cwd = os.getcwd()
context.append(f"Current directory: {cwd}")
# Git情報
try:
git_status = subprocess.run(
["git", "status", "--porcelain"],
capture_output=True, text=True, cwd=cwd
)
if git_status.returncode == 0:
context.append(f"Git status: {git_status.stdout.strip() or 'Clean'}")
except:
context.append("Git: Not a git repository")
# ファイル構造(簡略版)
try:
files = []
for item in Path(cwd).iterdir():
if not item.name.startswith('.') and item.name not in ['node_modules', '__pycache__']:
if item.is_file():
files.append(f"📄 {item.name}")
elif item.is_dir():
files.append(f"📁 {item.name}/")
if files:
context.append("Project files:")
context.extend(files[:10]) # 最初の10個まで
except Exception as e:
context.append(f"File listing error: {e}")
return "\n".join(context)
# MCPサーバーのセットアップ
app = Server("local-llm-mcp")
llm = LocalLLMServer()
@app.tool("code_with_local_llm")
async def code_with_local_llm(
task: str,
include_context: bool = True,
model_override: str = ""
) -> str:
"""
ローカルLLMでコーディングタスクを実行
Args:
task: 実行したいコーディングタスク
include_context: プロジェクトコンテキストを含めるか
model_override: 使用するモデルを一時的に変更
"""
logger.info(f"Executing coding task: {task}")
# モデルの一時変更
original_model = llm.model
if model_override:
llm.model = model_override
try:
# システムプロンプト構築
system_prompt = """You are an expert coding assistant. You can:
1. Write, analyze, and debug code
2. Explain programming concepts
3. Suggest optimizations and best practices
4. Generate complete, working solutions
Always provide:
- Clear, commented code
- Explanations of your approach
- Any assumptions you've made
- Suggestions for improvements
Format your response clearly with code blocks and explanations."""
# プロジェクトコンテキストを追加
if include_context:
context = llm.get_project_context()
system_prompt += f"\n\nCurrent project context:\n{context}"
# LLMに送信
response = llm.call_ollama(task, system_prompt)
return response
except Exception as e:
logger.error(f"Code generation failed: {e}")
return f"❌ Error in code generation: {e}"
finally:
# モデルを元に戻す
llm.model = original_model
@app.tool("read_file_with_analysis")
async def read_file_with_analysis(
filepath: str,
analysis_type: str = "general"
) -> str:
"""
ファイルを読み込んでLLMで分析
Args:
filepath: 分析するファイルのパス
analysis_type: 分析タイプ (general, bugs, optimization, documentation)
"""
logger.info(f"Analyzing file: {filepath}")
try:
# ファイル読み込み
with open(filepath, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
# 分析タイプに応じたプロンプト
analysis_prompts = {
"general": "Analyze this code and provide a general overview, including its purpose, structure, and key components.",
"bugs": "Review this code for potential bugs, errors, or issues. Suggest fixes if found.",
"optimization": "Analyze this code for performance optimizations and suggest improvements.",
"documentation": "Generate comprehensive documentation for this code, including docstrings and comments."
}
prompt = f"{analysis_prompts.get(analysis_type, analysis_prompts['general'])}\n\nFile: {filepath}\n\nCode:\n```\n{content}\n```"
system_prompt = "You are a code review expert. Provide detailed, constructive analysis."
response = llm.call_ollama(prompt, system_prompt)
return f"📋 Analysis of {filepath}:\n\n{response}"
except FileNotFoundError:
return f"❌ File not found: {filepath}"
except Exception as e:
logger.error(f"File analysis failed: {e}")
return f"❌ Error analyzing file: {e}"
@app.tool("write_code_to_file")
async def write_code_to_file(
filepath: str,
task_description: str,
overwrite: bool = False
) -> str:
"""
LLMでコードを生成してファイルに書き込み
Args:
filepath: 書き込み先のファイルパス
task_description: コード生成のタスク説明
overwrite: 既存ファイルを上書きするか
"""
logger.info(f"Generating code for file: {filepath}")
try:
# 既存ファイルのチェック
if os.path.exists(filepath) and not overwrite:
return f"❌ File already exists: {filepath}. Use overwrite=true to replace."
# ファイル拡張子から言語を推定
ext = Path(filepath).suffix.lower()
language_map = {
'.py': 'Python',
'.js': 'JavaScript',
'.ts': 'TypeScript',
'.java': 'Java',
'.cpp': 'C++',
'.c': 'C',
'.rs': 'Rust',
'.go': 'Go'
}
language = language_map.get(ext, 'appropriate language')
# コード生成プロンプト
prompt = f"""Generate {language} code for the following task and save it to {filepath}:
Task: {task_description}
Requirements:
- Write complete, working code
- Include appropriate comments
- Follow best practices for {language}
- Make the code production-ready
Return ONLY the code that should be saved to the file, without any additional explanation or markdown formatting."""
system_prompt = f"You are an expert {language} developer. Generate clean, efficient, well-documented code."
# コード生成
generated_code = llm.call_ollama(prompt, system_prompt)
# ファイルに書き込み
os.makedirs(os.path.dirname(filepath), exist_ok=True)
with open(filepath, 'w', encoding='utf-8') as f:
f.write(generated_code)
return f"✅ Code generated and saved to {filepath}\n\nGenerated code:\n```{language.lower()}\n{generated_code}\n```"
except Exception as e:
logger.error(f"Code generation and file writing failed: {e}")
return f"❌ Error: {e}"
@app.tool("debug_with_llm")
async def debug_with_llm(
error_message: str,
code_context: str = "",
filepath: str = ""
) -> str:
"""
エラーメッセージとコードコンテキストでデバッグ支援
Args:
error_message: エラーメッセージ
code_context: エラーが発生したコードの部分
filepath: エラーが発生したファイル(オプション)
"""
logger.info("Debugging with LLM")
try:
# ファイルが指定されていれば読み込み
if filepath and os.path.exists(filepath):
with open(filepath, 'r', encoding='utf-8', errors='ignore') as f:
file_content = f.read()
code_context = f"Full file content:\n{file_content}"
prompt = f"""Help debug this error:
Error message: {error_message}
Code context:
{code_context}
Please:
1. Explain what's causing the error
2. Provide a specific solution
3. Show the corrected code if applicable
4. Suggest ways to prevent similar errors"""
system_prompt = "You are an expert debugger. Provide clear, actionable solutions to programming errors."
response = llm.call_ollama(prompt, system_prompt)
return f"🔧 Debug Analysis:\n\n{response}"
except Exception as e:
logger.error(f"Debugging failed: {e}")
return f"❌ Debug error: {e}"
@app.tool("explain_code")
async def explain_code(
code: str,
detail_level: str = "medium"
) -> str:
"""
コードの説明を生成
Args:
code: 説明するコード
detail_level: 説明の詳細レベル (basic, medium, detailed)
"""
logger.info("Explaining code with LLM")
try:
detail_prompts = {
"basic": "Provide a brief, high-level explanation of what this code does.",
"medium": "Explain this code in detail, including its purpose, how it works, and key components.",
"detailed": "Provide a comprehensive explanation including line-by-line analysis, design patterns used, and potential improvements."
}
prompt = f"{detail_prompts.get(detail_level, detail_prompts['medium'])}\n\nCode:\n```\n{code}\n```"
system_prompt = "You are a programming instructor. Explain code clearly and educationally."
response = llm.call_ollama(prompt, system_prompt)
return f"📚 Code Explanation:\n\n{response}"
except Exception as e:
logger.error(f"Code explanation failed: {e}")
return f"❌ Explanation error: {e}"
@app.tool("switch_model")
async def switch_model(model_name: str) -> str:
"""
使用するローカルLLMモデルを切り替え
Args:
model_name: 切り替え先のモデル名
"""
logger.info(f"Switching model to: {model_name}")
try:
# モデルの存在確認
response = requests.get(f"{llm.ollama_url}/api/tags")
if response.status_code == 200:
models = response.json().get("models", [])
available_models = [model["name"] for model in models]
if model_name in available_models:
llm.model = model_name
return f"✅ Model switched to: {model_name}"
else:
return f"❌ Model not found. Available models: {', '.join(available_models)}"
else:
return "❌ Cannot check available models"
except Exception as e:
logger.error(f"Model switching failed: {e}")
return f"❌ Error switching model: {e}"
async def main():
"""MCPサーバーを起動"""
logger.info("Starting Local LLM MCP Server...")
logger.info(f"Using model: {llm.model}")
# Ollamaの接続確認
try:
response = requests.get(f"{llm.ollama_url}/api/tags", timeout=5)
if response.status_code == 200:
logger.info("✅ Ollama connection successful")
else:
logger.warning("⚠️ Ollama connection issue")
except Exception as e:
logger.error(f"❌ Cannot connect to Ollama: {e}")
# サーバー起動
await app.run()
if __name__ == "__main__":
asyncio.run(main())