Update documentation: reflect Layers 1-3 completion

Updated README.md and ARCHITECTURE.md to reflect current implementation
status. All three layers are now complete and functional.

Changes:
- README.md: Added Layer 2 (AI Memory) and Layer 3 (Big Five) features
- README.md: Added MCP tools list and usage examples
- README.md: Added Big Five personality traits explanation
- ARCHITECTURE.md: Updated Layer 2 and 3 status to Complete
- ARCHITECTURE.md: Updated implementation strategy phases
- Archived old documentation in docs/archive/old-versions/

Current status:
- Layer 1  Complete: Pure memory storage
- Layer 2  Complete: AI interpretation + priority scoring
- Layer 3  Complete: Big Five personality analysis
- Layer 4 🔵 Planned: Game systems and companion features
- Layer 5 🔵 Future: Distribution and sharing
This commit is contained in:
Claude
2025-11-06 06:11:01 +00:00
parent 68d6d43582
commit 2aac138185
4 changed files with 601 additions and 79 deletions

View File

@@ -12,29 +12,29 @@ aigptは、独立したレイヤーを積み重ねる設計です。各レイヤ
```
┌─────────────────────────────────────────┐
│ Layer 5: Distribution & Sharing │ Future
│ Layer 5: Distribution & Sharing │ 🔵 Future
│ (Game streaming, public/private) │
├─────────────────────────────────────────┤
│ Layer 4b: AI Companion │ Future
│ Layer 4b: AI Companion │ 🔵 Planned
│ (Romance system, personality growth) │
├─────────────────────────────────────────┤
│ Layer 4a: Game Systems │ Future
│ Layer 4a: Game Systems │ 🔵 Planned
│ (Ranking, rarity, XP, visualization) │
├─────────────────────────────────────────┤
│ Layer 3: User Evaluation │ Future
│ (Personality diagnosis from patterns)
│ Layer 3: User Evaluation │ ✅ Complete
│ (Big Five personality analysis)
├─────────────────────────────────────────┤
│ Layer 2: AI Memory │ Future
│ Layer 2: AI Memory │ ✅ Complete
│ (Claude interpretation, priority_score)│
├─────────────────────────────────────────┤
│ Layer 1: Pure Memory Storage │ ✅ Current
│ Layer 1: Pure Memory Storage │ ✅ Complete
│ (SQLite, ULID, CRUD operations) │
└─────────────────────────────────────────┘
```
## Layer 1: Pure Memory Storage (Current)
## Layer 1: Pure Memory Storage
**Status**: ✅ **Implemented & Tested**
**Status**: ✅ **Complete**
### Purpose
正確なデータの保存と参照。シンプルで信頼できる基盤。
@@ -86,16 +86,16 @@ src/
---
## Layer 2: AI Memory (Planned)
## Layer 2: AI Memory
**Status**: 🔵 **Planned**
**Status**: **Complete**
### Purpose
Claudeが記憶内容を解釈し、重要度を評価。
Claudeが記憶内容を解釈し、重要度を評価。人間の記憶プロセス(記憶と同時に評価)を模倣。
### Extended Data Model
```rust
pub struct AIMemory {
pub struct Memory {
// Layer 1 fields
pub id: String,
pub content: String,
@@ -103,63 +103,75 @@ pub struct AIMemory {
pub updated_at: DateTime<Utc>,
// Layer 2 additions
pub interpreted_content: String, // Claude's interpretation
pub priority_score: f32, // 0.0 - 1.0
pub psychological_factors: PsychologicalFactors,
}
pub struct PsychologicalFactors {
pub emotional_weight: f32, // 0.0 - 1.0
pub personal_relevance: f32, // 0.0 - 1.0
pub novelty: f32, // 0.0 - 1.0
pub utility: f32, // 0.0 - 1.0
pub ai_interpretation: Option<String>, // Claude's interpretation
pub priority_score: Option<f32>, // 0.0 - 1.0
}
```
### MCP Tools (Additional)
- `create_memory_with_ai` - Create with Claude interpretation
- `reinterpret_memory` - Re-evaluate existing memory
- `get_high_priority` - Get memories above threshold
### MCP Tools
- `create_ai_memory` - Create memory with AI interpretation and priority score
- `content`: Memory content
- `ai_interpretation`: Optional AI interpretation
- `priority_score`: Optional priority (0.0-1.0)
### Implementation Strategy
- Feature flag: `--features ai-memory`
- Backward compatible with Layer 1
### Philosophy
"AIは進化しますが、ツールは進化しません" - AIが判断し、ツールは記録のみ。
### Implementation
- Backward compatible with Layer 1 (Optional fields)
- Automatic schema migration from Layer 1
- Claude Code does interpretation (no external API)
---
## Layer 3: User Evaluation (Planned)
## Layer 3: User Evaluation
**Status**: 🔵 **Planned**
**Status**: **Complete**
### Purpose
メモリパターンからユーザーの性格を診断
Layer 2のメモリパターンからユーザーの性格を分析。Big Five心理学モデルを使用
### Diagnosis Types
### Data Model
```rust
pub enum DiagnosisType {
Innovator, // 革新者
Philosopher, // 哲学者
Pragmatist, // 実用主義者
Explorer, // 探検家
Protector, // 保護者
Visionary, // 未来志向
pub struct UserAnalysis {
pub id: String,
pub openness: f32, // 0.0-1.0: 創造性、好奇心
pub conscientiousness: f32, // 0.0-1.0: 計画性、信頼性
pub extraversion: f32, // 0.0-1.0: 外向性、社交性
pub agreeableness: f32, // 0.0-1.0: 協調性、共感性
pub neuroticism: f32, // 0.0-1.0: 神経質さ(低い=安定)
pub summary: String, // 分析サマリー
pub analyzed_at: DateTime<Utc>,
}
```
### Analysis
- Memory content patterns
- Priority score distribution
- Creation frequency
- Topic diversity
### Big Five Model
心理学で最も信頼性の高い性格モデルOCEAN
- **O**penness: 新しい経験への開かれさ
- **C**onscientiousness: 誠実性、計画性
- **E**xtraversion: 外向性
- **A**greeableness: 協調性
- **N**euroticism: 神経質さ
### MCP Tools (Additional)
- `diagnose_user` - Run personality diagnosis
- `get_user_profile` - Get analysis summary
### Analysis Process
1. Layer 2メモリを蓄積
2. AIがパターンを分析活動の種類、優先度の傾向など
3. Big Fiveスコアを推測
4. 分析結果を保存
### MCP Tools
- `save_user_analysis` - Save Big Five personality analysis
- All 5 traits (0.0-1.0) + summary
- `get_user_analysis` - Get latest personality profile
### Storage
- SQLite table: `user_analyses`
- Historical tracking: Compare analyses over time
- Helper methods: `dominant_trait()`, `is_high()`
---
## Layer 4a: Game Systems (Planned)
## Layer 4a: Game Systems
**Status**: 🔵 **Planned**
@@ -184,7 +196,7 @@ pub struct GameMemory {
---
## Layer 4b: AI Companion (Planned)
## Layer 4b: AI Companion
**Status**: 🔵 **Planned**
@@ -236,21 +248,27 @@ pub struct Companion {
- [x] Tests
- [x] Documentation
### Phase 2: Layer 2 (Next)
- [ ] Add AI interpretation fields to schema
- [ ] Implement priority scoring logic
- [ ] Create `create_memory_with_ai` tool
- [ ] Update MCP server
- [ ] Write tests for AI features
### Phase 2: Layer 2 ✅ (Complete)
- [x] Add AI interpretation fields to schema
- [x] Implement priority scoring logic
- [x] Create `create_ai_memory` tool
- [x] Update MCP server
- [x] Automatic schema migration
- [x] Backward compatibility
### Phase 3: Layers 3-4 (Future)
- [ ] User diagnosis system
- [ ] Game mechanics
- [ ] Companion system
### Phase 3: Layer 3 ✅ (Complete)
- [x] Big Five personality model
- [x] UserAnalysis data structure
- [x] user_analyses table
- [x] `save_user_analysis` tool
- [x] `get_user_analysis` tool
- [x] Historical tracking support
### Phase 4: Layer 5 (Future)
- [ ] Sharing mechanisms
- [ ] Public/private modes
### Phase 4: Layers 4-5 (Next)
- [ ] Game mechanics (Layer 4a)
- [ ] Companion system (Layer 4b)
- [ ] Sharing mechanisms (Layer 5)
- [ ] Public/private modes (Layer 5)
## Design Principles
@@ -330,5 +348,5 @@ src/
---
**Version**: 0.2.0
**Last Updated**: 2025-11-05
**Current Layer**: 1
**Last Updated**: 2025-11-06
**Current Status**: Layers 1-3 Complete, Layer 4 Planned