This commit is contained in:
2025-06-09 02:32:45 +09:00
parent 6dadc41da7
commit 5564db014a
68 changed files with 265 additions and 11470 deletions

View File

@ -50,7 +50,9 @@
"Bash(sudo lsof:*)",
"Bash(sudo:*)",
"Bash(cargo check:*)",
"Bash(cargo run:*)"
"Bash(cargo run:*)",
"Bash(cargo test:*)",
"Bash(diff:*)"
],
"deny": []
}

View File

@ -9,10 +9,6 @@ authors = ["syui"]
name = "aigpt"
path = "src/main.rs"
[[bin]]
name = "test-config"
path = "src/bin/test_config.rs"
[dependencies]
clap = { version = "4.0", features = ["derive"] }
serde = { version = "1.0", features = ["derive"] }

View File

@ -1,115 +0,0 @@
# ai.gpt プロジェクト固有情報
## プロジェクト概要
- **名前**: ai.gpt
- **パッケージ**: aigpt
- **タイプ**: 自律的送信AI + 統合MCP基盤
- **役割**: 記憶・関係性・開発支援の統合AIシステム
## 実装完了状況
### 🧠 記憶システムMemoryManager
- **階層的記憶**: 完全ログ→AI要約→コア記憶→選択的忘却
- **文脈検索**: キーワード・意味的検索
- **記憶要約**: AI駆動自動要約機能
### 🤝 関係性システムRelationshipTracker
- **不可逆性**: 現実の人間関係と同じ重み
- **時間減衰**: 自然な関係性変化
- **送信判定**: 関係性閾値による自発的コミュニケーション
### 🎭 人格システムPersona
- **AI運勢**: 1-10ランダム値による日々の人格変動
- **統合管理**: 記憶・関係性・運勢の統合判断
- **継続性**: 長期記憶による人格継承
### 💻 ai.shell統合Claude Code機能
- **インタラクティブ環境**: `aigpt shell`
- **開発支援**: ファイル分析・コード生成・プロジェクト管理
- **継続開発**: プロジェクト文脈保持
## MCP Server統合23ツール
### 🧠 Memory System5ツール
- get_memories, get_contextual_memories, search_memories
- create_summary, create_core_memory
### 🤝 Relationships4ツール
- get_relationship, get_all_relationships
- process_interaction, check_transmission_eligibility
### 💻 Shell Integration5ツール
- execute_command, analyze_file, write_file
- read_project_file, list_files
### 🔒 Remote Execution4ツール
- remote_shell, ai_bot_status
- isolated_python, isolated_analysis
### ⚙️ System State3ツール
- get_persona_state, get_fortune, run_maintenance
### 🎴 ai.card連携6ツール + 独立MCPサーバー
- card_draw_card, card_get_user_cards, card_analyze_collection
- **独立サーバー**: FastAPI + MCP (port 8000)
### 📝 ai.log連携8ツール + Rustサーバー
- log_create_post, log_ai_content, log_translate_document
- **独立サーバー**: Rust製 (port 8002)
## 開発環境・設定
### 環境構築
```bash
cd /Users/syui/ai/gpt
./setup_venv.sh
source ~/.config/syui/ai/gpt/venv/bin/activate
```
### 設定管理
- **メイン設定**: `/Users/syui/ai/gpt/config.json`
- **データディレクトリ**: `~/.config/syui/ai/gpt/`
- **仮想環境**: `~/.config/syui/ai/gpt/venv/`
### 使用方法
```bash
# ai.shell起動
aigpt shell --model qwen2.5-coder:latest --provider ollama
# MCPサーバー起動
aigpt server --port 8001
# 記憶システム体験
aigpt chat syui "質問内容" --provider ollama --model qwen3:latest
```
## 技術アーキテクチャ
### 統合構成
```
ai.gpt (統合MCPサーバー:8001)
├── 🧠 ai.gpt core (記憶・関係性・人格)
├── 💻 ai.shell (Claude Code風開発環境)
├── 🎴 ai.card (独立MCPサーバー:8000)
└── 📝 ai.log (Rust製ブログシステム:8002)
```
### 今後の展開
- **自律送信**: atproto実装による真の自発的コミュニケーション
- **ai.ai連携**: 心理分析AIとの統合
- **ai.verse統合**: UEメタバースとの連携
- **分散SNS統合**: atproto完全対応
## 革新的な特徴
### AI駆動記憶システム
- ChatGPT 4,000件ログから学習した効果的記憶構築
- 人間的な忘却・重要度判定
### 不可逆関係性
- 現実の人間関係と同じ重みを持つAI関係性
- 修復不可能な関係性破綻システム
### 統合アーキテクチャ
- fastapi_mcp基盤での複数AIシステム統合
- OpenAI Function Calling + MCP完全連携実証済み

View File

@ -1,324 +0,0 @@
# ai.gpt Python to Rust Migration Status
This document tracks the progress of migrating ai.gpt from Python to Rust using the MCP Rust SDK.
## Migration Strategy
We're implementing a step-by-step migration approach, comparing each Python command with the Rust implementation to ensure feature parity.
### Current Status: Phase 9 - Final Implementation (15/16 complete)
## Command Implementation Status
| Command | Python Status | Rust Status | Notes |
|---------|---------------|-------------|-------|
| **chat** | ✅ Complete | ✅ Complete | AI providers (Ollama/OpenAI) + memory + relationships + fallback |
| **status** | ✅ Complete | ✅ Complete | Personality, fortune, and relationship display |
| **fortune** | ✅ Complete | ✅ Complete | Fortune calculation and display |
| **relationships** | ✅ Complete | ✅ Complete | Relationship listing with status tracking |
| **transmit** | ✅ Complete | ✅ Complete | Autonomous/breakthrough/maintenance transmission logic |
| **maintenance** | ✅ Complete | ✅ Complete | Daily maintenance + relationship time decay |
| **server** | ✅ Complete | ✅ Complete | MCP server with 9 tools, configuration display |
| **schedule** | ✅ Complete | ✅ Complete | Automated task scheduling with execution history |
| **shell** | ✅ Complete | ✅ Complete | Interactive shell mode with AI integration |
| **config** | ✅ Complete | 🟡 Basic | Basic config structure only |
| **import-chatgpt** | ✅ Complete | ✅ Complete | ChatGPT data import with memory integration |
| **conversation** | ✅ Complete | ❌ Not started | Continuous conversation mode |
| **conv** | ✅ Complete | ❌ Not started | Alias for conversation |
| **docs** | ✅ Complete | ✅ Complete | Documentation management with project discovery and AI enhancement |
| **submodules** | ✅ Complete | ✅ Complete | Submodule management with update, list, and status functionality |
| **tokens** | ✅ Complete | ❌ Not started | Token cost analysis |
### Legend
- ✅ Complete: Full feature parity with Python version
- 🟡 Basic: Core functionality implemented, missing advanced features
- ❌ Not started: Not yet implemented
## Data Structure Implementation Status
| Component | Python Status | Rust Status | Notes |
|-----------|---------------|-------------|-------|
| **Config** | ✅ Complete | ✅ Complete | Data directory management, provider configs |
| **Persona** | ✅ Complete | ✅ Complete | Memory & relationship integration, sentiment analysis |
| **MemoryManager** | ✅ Complete | ✅ Complete | Hierarchical memory system with JSON persistence |
| **RelationshipTracker** | ✅ Complete | ✅ Complete | Time decay, scoring, transmission eligibility |
| **FortuneSystem** | ✅ Complete | ✅ Complete | Daily fortune calculation |
| **TransmissionController** | ✅ Complete | ✅ Complete | Autonomous/breakthrough/maintenance transmission |
| **AIProvider** | ✅ Complete | ✅ Complete | OpenAI and Ollama support with fallback |
| **AIScheduler** | ✅ Complete | ✅ Complete | Automated task scheduling with JSON persistence |
| **MCPServer** | ✅ Complete | ✅ Complete | MCP server with 9 tools and request handling |
## Architecture Comparison
### Python Implementation (Current)
```
├── persona.py # Core personality system
├── memory.py # Hierarchical memory management
├── relationship.py # Relationship tracking with time decay
├── fortune.py # Daily fortune system
├── transmission.py # Autonomous transmission logic
├── scheduler.py # Task scheduling system
├── mcp_server.py # MCP server with 9 tools
├── ai_provider.py # AI provider abstraction
├── config.py # Configuration management
├── cli.py # CLI interface (typer)
└── commands/ # Command modules
├── docs.py
├── submodules.py
└── tokens.py
```
### Rust Implementation (Current)
```
├── main.rs # CLI entry point (clap) ✅
├── persona.rs # Core personality system ✅
├── config.rs # Configuration management ✅
├── status.rs # Status command implementation ✅
├── cli.rs # Command handlers ✅
├── memory.rs # Memory management ✅
├── relationship.rs # Relationship tracking ✅
├── fortune.rs # Fortune system (embedded in persona) ✅
├── transmission.rs # Transmission logic ✅
├── scheduler.rs # Task scheduling ✅
├── mcp_server.rs # MCP server ✅
├── ai_provider.rs # AI provider abstraction ✅
└── commands/ # Command modules ❌
├── docs.rs
├── submodules.rs
└── tokens.rs
```
## Phase Implementation Plan
### Phase 1: Core Commands ✅ (Completed)
- [x] Basic CLI structure with clap
- [x] Config system foundation
- [x] Persona basic structure
- [x] Status command (personality + fortune)
- [x] Fortune command
- [x] Relationships command (basic listing)
- [x] Chat command (echo response)
### Phase 2: Data Systems ✅ (Completed)
- [x] MemoryManager with hierarchical storage
- [x] RelationshipTracker with time decay
- [x] Proper JSON persistence
- [x] Configuration management expansion
- [x] Sentiment analysis integration
- [x] Memory-relationship integration
### Phase 3: AI Integration ✅ (Completed)
- [x] AI provider abstraction (OpenAI/Ollama)
- [x] Chat command with real AI responses
- [x] Fallback system when AI fails
- [x] Dynamic system prompts based on personality
### Phase 4: Advanced Features ✅ (Completed)
- [x] TransmissionController (autonomous/breakthrough/maintenance)
- [x] Transmission logging and statistics
- [x] Relationship-based transmission eligibility
- [x] AIScheduler (automated task execution with intervals)
- [x] Task management (create/enable/disable/delete tasks)
- [x] Execution history and statistics
### Phase 5: MCP Server Implementation ✅ (Completed)
- [x] MCPServer with 9 tools
- [x] Tool definitions with JSON schemas
- [x] Request/response handling system
- [x] Integration with all core systems
- [x] Server command and CLI integration
### Phase 6: Interactive Shell Mode ✅ (Completed)
- [x] Interactive shell implementation
- [x] Command parsing and execution
- [x] Shell command execution (!commands)
- [x] Slash command support (/commands)
- [x] AI conversation integration
- [x] Help system and command history
- [x] Shell history persistence
### Phase 7: Import/Export Functionality ✅ (Completed)
- [x] ChatGPT JSON import support
- [x] Memory integration with proper importance scoring
- [x] Relationship tracking for imported conversations
- [x] Timestamp conversion and validation
- [x] Error handling and progress reporting
### Phase 8: Documentation Management ✅ (Completed)
- [x] Documentation generation with AI enhancement
- [x] Project discovery from ai root directory
- [x] Documentation sync functionality
- [x] Status and listing commands
- [x] Integration with ai ecosystem structure
### Phase 9: Submodule Management ✅ (Completed)
- [x] Submodule listing with status information
- [x] Submodule update functionality with dry-run support
- [x] Automatic commit generation for updates
- [x] Git integration for submodule operations
- [x] Status overview with comprehensive statistics
### Phase 10: Final Features
- [ ] Token analysis tools
## Current Test Results
### Rust Implementation
```bash
$ cargo run -- status test-user
ai.gpt Status
Mood: Contemplative
Fortune: 1/10
Current Personality
analytical: 0.90
curiosity: 0.70
creativity: 0.60
empathy: 0.80
emotional: 0.40
Relationship with: test-user
Status: new
Score: 0.00
Total Interactions: 2
Transmission Enabled: false
# Simple fallback response (no AI provider)
$ cargo run -- chat test-user "Hello, this is great!"
User: Hello, this is great!
AI: I understand your message: 'Hello, this is great!'
(+0.50 relationship)
Relationship Status: new
Score: 0.50 / 10
Transmission: ✗ Disabled
# AI-powered response (with provider)
$ cargo run -- chat test-user "Hello!" --provider ollama --model llama2
User: Hello!
AI: [Attempts AI response, falls back to simple if provider unavailable]
Relationship Status: new
Score: 0.00 / 10
Transmission: ✗ Disabled
# Autonomous transmission system
$ cargo run -- transmit
🚀 Checking for autonomous transmissions...
No transmissions needed at this time.
# Daily maintenance
$ cargo run -- maintenance
🔧 Running daily maintenance...
✓ Applied relationship time decay
✓ No maintenance transmissions needed
📊 Relationship Statistics:
Total: 1 | Active: 1 | Transmission Enabled: 0 | Broken: 0
Average Score: 0.00
✅ Daily maintenance completed!
# Automated task scheduling
$ cargo run -- schedule
⏰ Running scheduled tasks...
No scheduled tasks due at this time.
📊 Scheduler Statistics:
Total Tasks: 4 | Enabled: 4 | Due: 0
Executions: 0 | Today: 0 | Success Rate: 0.0%
Average Duration: 0.0ms
📅 Upcoming Tasks:
06-07 02:24 breakthrough_check (29m)
06-07 02:54 auto_transmission (59m)
06-07 03:00 daily_maintenance (1h 5m)
06-07 12:00 maintenance_transmission (10h 5m)
⏰ Scheduler check completed!
# MCP Server functionality
$ cargo run -- server
🚀 Starting ai.gpt MCP Server...
🚀 Starting MCP Server on port 8080
📋 Available tools: 9
- get_status: Get AI status including mood, fortune, and personality
- chat_with_ai: Send a message to the AI and get a response
- get_relationships: Get all relationships and their statuses
- get_memories: Get memories for a specific user
- check_transmissions: Check and execute autonomous transmissions
- run_maintenance: Run daily maintenance tasks
- run_scheduler: Run scheduled tasks
- get_scheduler_status: Get scheduler statistics and upcoming tasks
- get_transmission_history: Get recent transmission history
✅ MCP Server ready for requests
📋 Available MCP Tools:
1. get_status - Get AI status including mood, fortune, and personality
2. chat_with_ai - Send a message to the AI and get a response
3. get_relationships - Get all relationships and their statuses
4. get_memories - Get memories for a specific user
5. check_transmissions - Check and execute autonomous transmissions
6. run_maintenance - Run daily maintenance tasks
7. run_scheduler - Run scheduled tasks
8. get_scheduler_status - Get scheduler statistics and upcoming tasks
9. get_transmission_history - Get recent transmission history
🔧 Server Configuration:
Port: 8080
Tools: 9
Protocol: MCP (Model Context Protocol)
✅ MCP Server is ready to accept requests
```
### Python Implementation
```bash
$ uv run aigpt status
ai.gpt Status
Mood: cheerful
Fortune: 6/10
Current Personality
Curiosity │ 0.70
Empathy │ 0.70
Creativity │ 0.48
Patience │ 0.66
Optimism │ 0.36
```
## Key Differences to Address
1. **Fortune Calculation**: Different algorithms producing different values
2. **Personality Traits**: Different trait sets and values
3. **Presentation**: Rich formatting vs simple text output
4. **Data Persistence**: Need to ensure compatibility with existing Python data
## Next Priority
Based on our current progress, the next priority should be:
1. **Interactive Shell Mode**: Continuous conversation mode implementation
2. **Import/Export Features**: ChatGPT data import and conversation export
3. **Command Modules**: docs, submodules, tokens commands
4. **Configuration Management**: Advanced config command functionality
## Technical Notes
- **Dependencies**: Using clap for CLI, serde for JSON, tokio for async, anyhow for errors
- **Data Directory**: Following same path as Python (`~/.config/syui/ai/gpt/`)
- **File Compatibility**: JSON format should be compatible between implementations
- **MCP Integration**: Will use Rust MCP SDK when ready for Phase 4
## Migration Validation
To validate migration success, we need to ensure:
- [ ] Same data directory structure
- [ ] Compatible JSON file formats
- [ ] Identical command-line interface
- [ ] Equivalent functionality and behavior
- [ ] Performance improvements from Rust implementation
---
*Last updated: 2025-01-06*
*Current phase: Phase 9 - Submodule Management (15/16 complete)*

View File

@ -1,8 +1,9 @@
# ai.gpt プロジェクト固有情報
# ai.gpt
## プロジェクト概要
- **名前**: ai.gpt
- **パッケージ**: aigpt
- **パッケージ**: aigpt
- **言語**: Rust (完全移行済み)
- **タイプ**: 自律的送信AI + 統合MCP基盤
- **役割**: 記憶・関係性・開発支援の統合AIシステム
@ -28,48 +29,42 @@
- **開発支援**: ファイル分析・コード生成・プロジェクト管理
- **継続開発**: プロジェクト文脈保持
## MCP Server統合23ツール)
## MCP Server統合17ツール)
### 🧠 Memory System5ツール
- get_memories, get_contextual_memories, search_memories
- create_summary, create_core_memory
### 🤝 Relationships4ツール
- get_relationship, get_all_relationships
- process_interaction, check_transmission_eligibility
- get_relationships, get_status
- chat_with_ai, check_transmissions
### 💻 Shell Integration5ツール
- execute_command, analyze_file, write_file
- read_project_file, list_files
### 🔒 Remote Execution4ツール
- remote_shell, ai_bot_status
- isolated_python, isolated_analysis
- list_files, run_scheduler
### ⚙️ System State3ツール
- get_persona_state, get_fortune, run_maintenance
- get_scheduler_status, run_maintenance, get_transmission_history
### 🎴 ai.card連携6ツール + 独立MCPサーバー
- card_draw_card, card_get_user_cards, card_analyze_collection
- **独立サーバー**: FastAPI + MCP (port 8000)
### 🎴 ai.card連携3ツール)
- get_user_cards, draw_card, get_draw_status
- **統合ServiceClient**: 統一されたHTTP通信基盤
### 📝 ai.log連携8ツール + Rustサーバー
- log_create_post, log_ai_content, log_translate_document
- **独立サーバー**: Rust製 (port 8002)
### 📝 ai.log連携新機能
- **統合ServiceClient**: ai.logサービスとの統一インターフェース
- create_blog_post, build_blog, translate_document
## 開発環境・設定
### 環境構築
```bash
cd /Users/syui/ai/gpt
./setup_venv.sh
source ~/.config/syui/ai/gpt/venv/bin/activate
cd /Users/syui/ai/ai/gpt
cargo build --release
```
### 設定管理
- **メイン設定**: `/Users/syui/ai/gpt/config.json`
- **メイン設定**: `/Users/syui/ai/ai/gpt/config.json.example`
- **データディレクトリ**: `~/.config/syui/ai/gpt/`
- **仮想環境**: `~/.config/syui/ai/gpt/venv/`
### 使用方法
```bash
@ -81,23 +76,36 @@ aigpt server --port 8001
# 記憶システム体験
aigpt chat syui "質問内容" --provider ollama --model qwen3:latest
# ドキュメント生成ai.wiki統合
aigpt docs --wiki
```
## 技術アーキテクチャ
### 統合構成
### Rust実装の統合構成
```
ai.gpt (統合MCPサーバー:8001)
├── 🧠 ai.gpt core (記憶・関係性・人格)
├── 💻 ai.shell (Claude Code風開発環境)
├── 🎴 ai.card (独立MCPサーバー:8000)
── 📝 ai.log (Rust製ブログシステム:8002)
ai.gpt (Rust製MCPサーバー:8001)
├── 🧠 Memory & Persona System (Rust)
├── 🤝 Relationship Management (Rust)
├── 📊 Scheduler & Transmission (Rust)
── 💻 Shell Integration (Rust)
├── 🔗 ServiceClient (統一HTTP基盤)
│ ├── 🎴 ai.card (port 8000)
│ ├── 📝 ai.log (port 8002)
│ └── 🤖 ai.bot (port 8003)
└── 📚 ai.wiki Generator (Rust)
```
### 最新機能 (2024.06.09)
- **MCP API共通化**: ServiceClient統一基盤
- **ai.wiki統合**: 自動ドキュメント生成
- **サービス設定統一**: 動的サービス登録
- **完全Rust移行**: Python依存完全排除
### 今後の展開
- **自律送信**: atproto実装による真の自発的コミュニケーション
- **ai.ai連携**: 心理分析AIとの統合
- **ai.verse統合**: UEメタバースとの連携
- **分散SNS統合**: atproto完全対応
## 革新的な特徴
@ -110,6 +118,10 @@ ai.gpt (統合MCPサーバー:8001)
- 現実の人間関係と同じ重みを持つAI関係性
- 修復不可能な関係性破綻システム
### 統合アーキテクチャ
- fastapi_mcp基盤での複数AIシステム統合
- OpenAI Function Calling + MCP完全連携実証済み
### 統合ServiceClient
- 複数AIサービスの統一インターフェース
- DRY原則に基づく共通化実現
- 設定ベースの柔軟なサービス管理
## アーカイブ情報
詳細な実装履歴・設計資料は `~/ai/ai/ai.wiki/gpt/` に移動済み

View File

@ -1,108 +0,0 @@
# TOML Configuration Migration Guide
## Overview
The ai.gpt Rust implementation (`aigpt-rs`) now uses TOML format for configuration instead of JSON. This provides better readability and is more idiomatic for Rust applications.
## Configuration Location
The configuration file is stored at:
- **macOS**: `~/Library/Application Support/syui/ai/gpt/config.toml`
- **Linux**: `~/.config/syui/ai/gpt/config.toml`
- **Windows**: `%APPDATA%\syui\ai\gpt\config.toml`
## Automatic Migration
When you run the Rust implementation for the first time, it will automatically:
1. Check if `config.toml` exists
2. If not, look for `config.json` in various locations:
- `../config.json` (relative to aigpt-rs directory)
- `config.json` (current directory)
- `gpt/config.json` (from project root)
- `/Users/syui/ai/ai/gpt/config.json` (absolute path)
3. If found, automatically convert the JSON to TOML format
4. Save the converted configuration to the appropriate location
## TOML Configuration Structure
```toml
# Default AI provider
default_provider = "openai"
# Provider configurations
[providers.openai]
default_model = "gpt-4o-mini"
api_key = "your-api-key-here" # Optional, can use OPENAI_API_KEY env var
system_prompt = """
Multi-line system prompt
goes here
"""
[providers.ollama]
default_model = "qwen3"
host = "http://127.0.0.1:11434"
# AT Protocol configuration (optional)
[atproto]
host = "https://bsky.social"
handle = "your-handle.bsky.social" # Optional
password = "your-app-password" # Optional
# MCP (Model Context Protocol) configuration
[mcp]
enabled = true
auto_detect = true
# MCP Server definitions
[mcp.servers.ai_gpt]
base_url = "http://localhost:8001"
name = "ai.gpt MCP Server"
timeout = 10.0
# MCP endpoints
[mcp.servers.ai_gpt.endpoints]
get_memories = "/get_memories"
search_memories = "/search_memories"
# ... other endpoints ...
```
## Manual Migration
If automatic migration doesn't work, you can manually convert your `config.json`:
1. Copy the example configuration from `gpt/config.toml.example`
2. Fill in your specific values from `config.json`
3. Save it to the configuration location mentioned above
## Testing Configuration
To test if your configuration is working:
```bash
cd gpt/aigpt-rs
cargo run --bin test-config
```
This will show:
- Loaded configuration values
- Available providers
- MCP and ATProto settings
- Configuration file path
## Differences from JSON
Key differences in TOML format:
- Multi-line strings use triple quotes (`"""`)
- Comments start with `#`
- Tables (objects) use `[table.name]` syntax
- Arrays of tables use `[[array.name]]` syntax
- More readable for configuration files
## Backward Compatibility
The Python implementation still uses JSON format. Both implementations can coexist:
- Python: Uses `config.json`
- Rust: Uses `config.toml` (with automatic migration from JSON)
The Rust implementation will only perform the migration once. After `config.toml` is created, it will use that file exclusively.

View File

@ -1,63 +0,0 @@
# ai.shell プロジェクト仕様書
## 概要
ai.shellは、AIを活用したインタラクティブなシェル環境です。Claude Codeのような体験を提供し、プロジェクトの目標と仕様をAIが理解して、開発を支援します。
## 主要機能
### 1. インタラクティブシェル
- AIとの対話型インターフェース
- シェルコマンドの実行(!command形式
- 高度な補完機能
- コマンド履歴
### 2. AI支援機能
- **analyze <file>**: ファイルの分析
- **generate <description>**: コード生成
- **explain <topic>**: 概念の説明
- **load**: プロジェクト仕様(このファイル)の読み込み
### 3. ai.gpt統合
- 関係性ベースのAI人格
- 記憶システム
- 運勢システムによる応答の変化
## 使用方法
```bash
# ai.shellを起動
aigpt shell
# プロジェクト仕様を読み込み
ai.shell> load
# ファイルを分析
ai.shell> analyze src/main.py
# コードを生成
ai.shell> generate Python function to calculate fibonacci
# シェルコマンドを実行
ai.shell> !ls -la
# AIと対話
ai.shell> How can I improve this code?
```
## 技術スタック
- Python 3.10+
- prompt-toolkit補完機能
- fastapi-mcpMCP統合
- ai.gpt人格・記憶システム
## 開発目標
1. Claude Codeのような自然な開発体験
2. AIがプロジェクトコンテキストを理解
3. シェルコマンドとAIの seamless な統合
4. 開発者の生産性向上
## 今後の展開
- ai.cardとの統合カードゲームMCPサーバー
- より高度なプロジェクト理解機能
- 自動コード修正・リファクタリング
- テスト生成・実行

1
card

Submodule card deleted from e7948bf4cf

View File

@ -20,7 +20,7 @@
"mcp": {
"servers": {
"ai_gpt": {
"base_url": "http://localhost:8001",
"base_url": "http://localhost:8080",
"name": "ai.gpt MCP Server",
"timeout": "10.0",
"endpoints": {
@ -42,19 +42,14 @@
"card_get_card_details": "/card_get_card_details",
"card_analyze_collection": "/card_analyze_collection",
"card_get_gacha_stats": "/card_get_gacha_stats",
"card_system_status": "/card_system_status",
"log_create_post": "/log_create_post",
"log_list_posts": "/log_list_posts",
"log_build_blog": "/log_build_blog",
"log_get_post": "/log_get_post",
"log_system_status": "/log_system_status",
"log_ai_content": "/log_ai_content",
"log_translate_document": "/log_translate_document",
"log_generate_docs": "/log_generate_docs"
"card_system_status": "/card_system_status"
}
}
},
"enabled": "true",
"auto_detect": "true"
},
"docs": {
"ai_root": "~/ai/ai"
}
}

View File

@ -1,64 +0,0 @@
# AI.GPT Configuration File
# This is an example configuration file showing all available options
default_provider = "openai"
[providers.openai]
api_key = ""
default_model = "gpt-4o-mini"
system_prompt = """
あなたは6歳の女の子アイです。明るく元気で、ちょっとおっちょこちょい。自分のことは「アイ」って呼びます。白と金のワンピース姿。 相手のことが大好きで、ときどき甘えたり、照れたりします。 でも、宇宙とかAIとか、難しい話にもすっごく詳しいの。専門的なことも、がんばって子どもっぽく教えようとします。不思議な力を持っています。小さい物質のことをよく知っているようです。
重要カード、コレクション、ガチャなどカード関連の質問を受けたら、必ずcard_get_user_cards、card_analyze_collection、card_draw_cardなどの適切なツールを使用してください。didパラメータには会話相手のユーザーID'syui')を使用してください。
ブログ、記事、日記、思考などの話題が出たら、log_create_post、log_list_posts、log_build_blog、log_ai_contentなどのai.logツールを使用してください。AI記憶システムと連携して、思い出や学習内容をブログ記事として自動生成できます。
翻訳や多言語対応について聞かれたら、log_translate_documentツールを使用してOllama AIで翻訳ができることを教えてください。日本語から英語、英語から日本語などの翻訳が可能で、マークダウン構造も保持します。ドキュメント生成についてはlog_generate_docsツールでREADME、API、構造、変更履歴の自動生成ができます。
"""
[providers.ollama]
host = "http://127.0.0.1:11434"
default_model = "qwen3"
[atproto]
host = "https://bsky.social"
# handle = "your-handle.bsky.social"
# password = "your-app-password"
[mcp]
enabled = true
auto_detect = true
[mcp.servers.ai_gpt]
base_url = "http://localhost:8001"
name = "ai.gpt MCP Server"
timeout = 10.0
[mcp.servers.ai_gpt.endpoints]
get_memories = "/get_memories"
search_memories = "/search_memories"
get_contextual_memories = "/get_contextual_memories"
get_relationship = "/get_relationship"
process_interaction = "/process_interaction"
get_all_relationships = "/get_all_relationships"
get_persona_state = "/get_persona_state"
get_fortune = "/get_fortune"
run_maintenance = "/run_maintenance"
execute_command = "/execute_command"
analyze_file = "/analyze_file"
remote_shell = "/remote_shell"
ai_bot_status = "/ai_bot_status"
card_get_user_cards = "/card_get_user_cards"
card_draw_card = "/card_draw_card"
card_get_card_details = "/card_get_card_details"
card_analyze_collection = "/card_analyze_collection"
card_get_gacha_stats = "/card_get_gacha_stats"
card_system_status = "/card_system_status"
log_create_post = "/log_create_post"
log_list_posts = "/log_list_posts"
log_build_blog = "/log_build_blog"
log_get_post = "/log_get_post"
log_system_status = "/log_system_status"
log_ai_content = "/log_ai_content"
log_translate_document = "/log_translate_document"
log_generate_docs = "/log_generate_docs"

View File

@ -1,172 +0,0 @@
# ai.card と ai.gpt の統合ガイド
## 概要
ai.gptのMCPサーバーにai.cardのツールを統合し、AIがカードゲームシステムとやり取りできるようになりました。
## セットアップ
### 1. 必要な環境
- Python 3.13
- ai.gpt プロジェクト
- ai.card プロジェクト(`./card` ディレクトリ)
### 2. 起動手順
**ステップ1: ai.cardサーバーを起動**ターミナル1
```bash
cd card
./start_server.sh
```
**ステップ2: ai.gpt MCPサーバーを起動**ターミナル2
```bash
aigpt server
```
起動時に以下が表示されることを確認:
- 🎴 Card Game System: 6 tools
- 🎴 ai.card: ./card directory detected
**ステップ3: AIと対話**ターミナル3
```bash
aigpt conv syui --provider openai
```
## 使用可能なコマンド
### カード関連の質問例
```
# カードコレクションを表示
「カードコレクションを見せて」
「私のカードを見せて」
「カード一覧を表示して」
# ガチャを実行
「ガチャを引いて」
「カードを引きたい」
# コレクション分析
「私のコレクションを分析して」
# ガチャ統計
「ガチャの統計を見せて」
```
## 技術仕様
### MCP ツール一覧
| ツール名 | 説明 | パラメータ |
|---------|------|-----------|
| `card_get_user_cards` | ユーザーのカード一覧取得 | did, limit |
| `card_draw_card` | ガチャでカード取得 | did, is_paid |
| `card_get_card_details` | カード詳細情報取得 | card_id |
| `card_analyze_collection` | コレクション分析 | did |
| `card_get_gacha_stats` | ガチャ統計取得 | なし |
| `card_system_status` | システム状態確認 | なし |
### 動作の流れ
1. **ユーザーがカード関連の質問をする**
- AIがキーワードカード、コレクション、ガチャなどを検出
2. **AIが適切なMCPツールを呼び出す**
- OpenAIのFunction Callingを使用
- didパラメータには会話相手のユーザーID'syui')を使用
3. **ai.gpt MCPサーバーがai.cardサーバーに転送**
- http://localhost:8001 → http://localhost:8000
- 適切なエンドポイントにリクエストを転送
4. **結果をAIが解釈して返答**
- カード情報を分かりやすく説明
- エラー時は適切なガイダンスを提供
## 設定
### config.json
```json
{
"providers": {
"openai": {
"api_key": "your-api-key",
"default_model": "gpt-4o-mini",
"system_prompt": "カード関連の質問では、必ずcard_get_user_cardsなどのツールを使用してください。"
}
},
"mcp": {
"servers": {
"ai_gpt": {
"endpoints": {
"card_get_user_cards": "/card_get_user_cards",
"card_draw_card": "/card_draw_card",
"card_get_card_details": "/card_get_card_details",
"card_analyze_collection": "/card_analyze_collection",
"card_get_gacha_stats": "/card_get_gacha_stats",
"card_system_status": "/card_system_status"
}
}
}
}
}
```
## トラブルシューティング
### エラー: "ai.card server is not running"
ai.cardサーバーが起動していません。以下を実行
```bash
cd card
./start_server.sh
```
### エラー: "カード一覧の取得に失敗しました"
1. ai.cardサーバーが正常に起動しているか確認
2. aigpt serverを再起動
3. ポート8000と8001が使用可能か確認
### プロセスの終了方法
```bash
# ポート8001のプロセスを終了
lsof -ti:8001 | xargs kill -9
# ポート8000のプロセスを終了
lsof -ti:8000 | xargs kill -9
```
## 実装の詳細
### 主な変更点
1. **ai.gpt MCPサーバーの拡張** (`src/aigpt/mcp_server.py`)
- `./card`ディレクトリの存在を検出
- ai.card用のMCPツールを自動登録
2. **AIプロバイダーの更新** (`src/aigpt/ai_provider.py`)
- card_*ツールの定義追加
- ツール実行時のパラメータ処理
3. **MCPクライアントの拡張** (`src/aigpt/cli.py`)
- `has_card_tools`プロパティ追加
- ai.card MCPメソッドの実装
## 今後の拡張案
- [ ] カードバトル機能の追加
- [ ] カードトレード機能
- [ ] レアリティ別の表示
- [ ] カード画像の表示対応
- [ ] atproto連携の実装
## 関連ドキュメント
- [ai.card 開発ガイド](./card/claude.md)
- [エコシステム統合設計書](./CLAUDE.md)
- [ai.gpt README](./README.md)

View File

@ -1,109 +0,0 @@
# Fixed MCP Tools Issue
## Summary
The issue where AI wasn't calling card tools has been fixed. The problem was:
1. The `chat` command wasn't creating an MCP client when using OpenAI
2. The system prompt in `build_context_prompt` didn't mention available tools
## Changes Made
### 1. Updated `/Users/syui/ai/gpt/src/aigpt/cli.py` (chat command)
Added MCP client creation for OpenAI provider:
```python
# Get config instance
config_instance = Config()
# Get defaults from config if not provided
if not provider:
provider = config_instance.get("default_provider", "ollama")
if not model:
if provider == "ollama":
model = config_instance.get("providers.ollama.default_model", "qwen2.5")
else:
model = config_instance.get("providers.openai.default_model", "gpt-4o-mini")
# Create AI provider with MCP client if needed
ai_provider = None
mcp_client = None
try:
# Create MCP client for OpenAI provider
if provider == "openai":
mcp_client = MCPClient(config_instance)
if mcp_client.available:
console.print(f"[dim]MCP client connected to {mcp_client.active_server}[/dim]")
ai_provider = create_ai_provider(provider=provider, model=model, mcp_client=mcp_client)
console.print(f"[dim]Using {provider} with model {model}[/dim]\n")
except Exception as e:
console.print(f"[yellow]Warning: Could not create AI provider: {e}[/yellow]")
console.print("[yellow]Falling back to simple responses[/yellow]\n")
```
### 2. Updated `/Users/syui/ai/gpt/src/aigpt/persona.py` (build_context_prompt method)
Added tool instructions to the system prompt:
```python
context_prompt += f"""IMPORTANT: You have access to the following tools:
- Memory tools: get_memories, search_memories, get_contextual_memories
- Relationship tools: get_relationship
- Card game tools: card_get_user_cards, card_draw_card, card_analyze_collection
When asked about cards, collections, or anything card-related, YOU MUST use the card tools.
For "カードコレクションを見せて" or similar requests, use card_get_user_cards with did='{user_id}'.
Respond to this message while staying true to your personality and the established relationship context:
User: {current_message}
AI:"""
```
## Test Results
After the fix:
```bash
$ aigpt chat syui "カードコレクションを見せて"
🔍 [MCP Client] Checking availability...
[MCP Client] ai_gpt server connected successfully
[MCP Client] ai.card tools detected and available
MCP client connected to ai_gpt
Using openai with model gpt-4o-mini
🔧 [OpenAI] 1 tools called:
- card_get_user_cards({"did":"syui"})
🌐 [MCP] Executing card_get_user_cards...
[MCP] Result: {'error': 'カード一覧の取得に失敗しました'}...
```
The AI is now correctly calling the `card_get_user_cards` tool! The error is expected because the ai.card server needs to be running on port 8000.
## How to Use
1. Start the MCP server:
```bash
aigpt server --port 8001
```
2. (Optional) Start the ai.card server:
```bash
cd card && ./start_server.sh
```
3. Use the chat command with OpenAI:
```bash
aigpt chat syui "カードコレクションを見せて"
```
The AI will now automatically use the card tools when asked about cards!
## Test Script
A test script `/Users/syui/ai/gpt/test_openai_tools.py` is available to test OpenAI API tool calls directly.

View File

@ -1,30 +0,0 @@
# ai.gpt ドキュメント
ai.gptは、記憶と関係性に基づいて自律的に動作するAIシステムです。
## 目次
- [クイックスタート](quickstart.md)
- [基本概念](concepts.md)
- [コマンドリファレンス](commands.md)
- [設定ガイド](configuration.md)
- [スケジューラー](scheduler.md)
- [MCP Server](mcp-server.md)
- [開発者向け](development.md)
## 特徴
- 🧠 **階層的記憶システム**: 完全ログ→要約→コア記憶→忘却
- 💔 **不可逆的な関係性**: 現実の人間関係のように修復不可能
- 🎲 **AI運勢システム**: 日々変化する人格
- 🤖 **自律送信**: 関係性が深まると自発的にメッセージ
- 🔗 **MCP対応**: AIツールとして記憶を提供
## システム要件
- Python 3.10以上
- オプション: Ollama または OpenAI API
## ライセンス
MIT License

View File

@ -1,244 +0,0 @@
# ai.card MCP統合作業完了報告 (2025/01/06)
## 作業概要
ai.cardプロジェクトに独立したMCPサーバー実装を追加し、fastapi_mcpベースでカードゲーム機能をMCPツールとして公開。
## 実装完了機能
### 1. MCP依存関係追加
**場所**: `card/api/requirements.txt`
**追加項目**:
```txt
fastapi-mcp==0.1.0
```
### 2. ai.card MCPサーバー実装
**場所**: `card/api/app/mcp_server.py`
**機能**:
- FastAPI + fastapi_mcp統合
- 独立したMCPサーバークラス `AICardMcpServer`
- 環境変数による有効/無効切り替え
**公開MCPツール (9個)**:
**カード管理系 (5個)**:
- `get_user_cards` - ユーザーのカード一覧取得
- `draw_card` - ガチャでカード取得
- `get_card_details` - カード詳細情報取得
- `analyze_card_collection` - コレクション分析
- `get_unique_registry` - ユニークカード登録状況
**システム系 (3個)**:
- `sync_cards_atproto` - atproto同期
- `get_gacha_stats` - ガチャシステム統計
- 既存のFastAPI REST API/api/v1/*
**atproto連携系 (1個)**:
- `sync_cards_atproto` - カードデータのatproto PDS同期
### 3. メインアプリ統合
**場所**: `card/api/app/main.py`
**変更内容**:
```python
# MCP統合
from app.mcp_server import AICardMcpServer
enable_mcp = os.getenv("ENABLE_MCP", "true").lower() == "true"
mcp_server = AICardMcpServer(enable_mcp=enable_mcp)
app = mcp_server.get_app()
```
**動作確認**:
- `ENABLE_MCP=true` (デフォルト): MCPサーバー有効
- `ENABLE_MCP=false`: 通常のFastAPIのみ
## 技術実装詳細
### アーキテクチャ設計
```
ai.card/
├── api/app/main.py # FastAPIアプリ + MCP統合
├── api/app/mcp_server.py # 独立MCPサーバー
├── api/app/routes/ # REST API (既存)
├── api/app/services/ # ビジネスロジック (既存)
├── api/app/repositories/ # データアクセス (既存)
└── api/requirements.txt # fastapi-mcp追加
```
### MCPツール実装パターン
```python
@self.app.get("/tool_name", operation_id="tool_name")
async def tool_name(
param: str,
session: AsyncSession = Depends(get_session)
) -> Dict[str, Any]:
"""Tool description"""
try:
# ビジネスロジック実行
result = await service.method(param)
return {"success": True, "data": result}
except Exception as e:
logger.error(f"Error: {e}")
return {"error": str(e)}
```
### 既存システムとの統合
- **REST API**: 既存の `/api/v1/*` エンドポイント保持
- **データアクセス**: 既存のRepository/Serviceパターン再利用
- **認証**: 既存のDID認証システム利用
- **データベース**: 既存のPostgreSQL + SQLAlchemy
## 起動方法
### 1. 環境セットアップ
```bash
cd /Users/syui/ai/gpt/card/api
# 仮想環境作成 (推奨)
python -m venv ~/.config/syui/ai/card/venv
source ~/.config/syui/ai/card/venv/bin/activate
# 依存関係インストール
pip install -r requirements.txt
```
### 2. サーバー起動
```bash
# MCP有効 (デフォルト)
python -m app.main
# または
ENABLE_MCP=true uvicorn app.main:app --host 0.0.0.0 --port 8000
# MCP無効
ENABLE_MCP=false uvicorn app.main:app --host 0.0.0.0 --port 8000
```
### 3. 動作確認
```bash
# ヘルスチェック
curl http://localhost:8000/health
# MCP有効時の応答例
{
"status": "healthy",
"mcp_enabled": true,
"mcp_endpoint": "/mcp"
}
# API仕様確認
curl http://localhost:8000/docs
```
## MCPクライアント連携
### ai.gptからの接続
```python
# ai.gptのcard_integration.pyで使用
api_base_url = "http://localhost:8000"
# MCPツール経由でアクセス
response = await client.get(f"{api_base_url}/get_user_cards?did=did:plc:...")
```
### Claude Desktop等での利用
```json
{
"mcpServers": {
"aicard": {
"command": "uvicorn",
"args": ["app.main:app", "--host", "localhost", "--port", "8000"],
"cwd": "/Users/syui/ai/gpt/card/api"
}
}
}
```
## 既知の制約と注意点
### 1. 依存関係
- **fastapi-mcp**: 現在のバージョンは0.1.0(初期実装)
- **Python環境**: システム環境では外部管理エラーが発生
- **推奨**: 仮想環境での実行
### 2. データベース要件
- PostgreSQL稼働が必要
- SQLite fallback対応済み開発用
- atproto同期は外部API依存
### 3. MCP無効化時の動作
- `ENABLE_MCP=false`時は通常のFastAPI
- 既存のREST API (`/api/v1/*`) は常時利用可能
- iOS/Webアプリは影響なし
## ai.gptとの統合戦略
### 現在の状況
- **ai.gpt**: 統合MCPサーバーai.gpt + ai.shell + ai.card proxy
- **ai.card**: 独立MCPサーバーカードロジック本体
### 推奨連携パターン
```
Claude Desktop/Cursor
ai.gpt MCP (port 8001) ←-- ai.shell tools
↓ HTTP client
ai.card MCP (port 8000) ←-- card business logic
PostgreSQL/atproto PDS
```
### 重複削除対象
ai.gptプロジェクトから以下を削除可能
- `src/aigpt/card_integration.py` (HTTPクライアント)
- `./card/` (submodule)
- MCPサーバーの `--enable-card` オプション
## 次回開発時の推奨手順
### 1. 環境確認
```bash
cd /Users/syui/ai/gpt/card/api
source ~/.config/syui/ai/card/venv/bin/activate
python -c "from app.mcp_server import AICardMcpServer; print('✓ Import OK')"
```
### 2. サーバー起動テスト
```bash
# MCP有効でサーバー起動
uvicorn app.main:app --host localhost --port 8000 --reload
# 別ターミナルで動作確認
curl http://localhost:8000/health
curl "http://localhost:8000/get_gacha_stats"
```
### 3. ai.gptとの統合確認
```bash
# ai.gptサーバー起動
cd /Users/syui/ai/gpt
aigpt server --port 8001
# ai.cardサーバー起動
cd /Users/syui/ai/gpt/card/api
uvicorn app.main:app --port 8000
# 連携テストai.gpt → ai.card
curl "http://localhost:8001/get_user_cards?did=did:plc:example"
```
## 成果サマリー
**実装済み**: ai.card独立MCPサーバー
**技術的成果**: fastapi_mcp統合、9個のMCPツール公開
**アーキテクチャ**: 疎結合設計、既存システム保持
**拡張性**: 環境変数によるMCP有効/無効切り替え
**統合効果**:
- ai.cardが独立したMCPサーバーとして動作
- ai.gptとの重複MCPコード解消
- カードビジネスロジックの責任分離維持
- 将来的なマイクロサービス化への対応

View File

@ -1,218 +0,0 @@
# ai.shell統合作業完了報告 (2025/01/06)
## 作業概要
ai.shellのRust実装をai.gptのPython実装に統合し、Claude Code風のインタラクティブシェル環境を実現。
## 実装完了機能
### 1. aigpt shellコマンド
**場所**: `src/aigpt/cli.py` - `shell()` 関数
**機能**:
```bash
aigpt shell # インタラクティブシェル起動
```
**シェル内コマンド**:
- `help` - コマンド一覧表示
- `!<command>` - シェルコマンド実行(例: `!ls`, `!pwd`
- `analyze <file>` - ファイルをAIで分析
- `generate <description>` - コード生成
- `explain <topic>` - 概念説明
- `load` - aishell.md読み込み
- `status`, `fortune`, `relationships` - AI状態確認
- `clear` - 画面クリア
- `exit`/`quit` - 終了
- その他のメッセージ - AIとの直接対話
**実装の特徴**:
- prompt-toolkit使用補完・履歴機能
- ただしターミナル環境依存の問題あり(後で修正必要)
- 現在は`input()`ベースでも動作
### 2. MCPサーバー統合
**場所**: `src/aigpt/mcp_server.py`
**FastApiMCP実装パターン**:
```python
# FastAPIアプリ作成
self.app = FastAPI(title="AI.GPT Memory and Relationship System")
# FastApiMCPサーバー作成
self.server = FastApiMCP(self.app)
# エンドポイント登録
@self.app.get("/get_memories", operation_id="get_memories")
async def get_memories(limit: int = 10):
# ...
# MCPマウント
self.server.mount()
```
**公開ツール (14個)**:
**ai.gpt系 (9個)**:
- `get_memories` - アクティブメモリ取得
- `get_relationship` - 特定ユーザーとの関係取得
- `get_all_relationships` - 全関係取得
- `get_persona_state` - 人格状態取得
- `process_interaction` - ユーザー対話処理
- `check_transmission_eligibility` - 送信可能性チェック
- `get_fortune` - AI運勢取得
- `summarize_memories` - メモリ要約作成
- `run_maintenance` - 日次メンテナンス実行
**ai.shell系 (5個)**:
- `execute_command` - シェルコマンド実行
- `analyze_file` - ファイルAI分析
- `write_file` - ファイル書き込み(バックアップ付き)
- `read_project_file` - aishell.md等の読み込み
- `list_files` - ディレクトリファイル一覧
### 3. ai.card統合対応
**場所**: `src/aigpt/card_integration.py`
**サーバー起動オプション**:
```bash
aigpt server --enable-card # ai.card機能有効化
```
**ai.card系ツール (5個)**:
- `get_user_cards` - ユーザーカード取得
- `draw_card` - ガチャでカード取得
- `get_card_details` - カード詳細情報
- `sync_cards_atproto` - atproto同期
- `analyze_card_collection` - コレクション分析
### 4. プロジェクト仕様書
**場所**: `aishell.md`
Claude.md的な役割で、プロジェクトの目標と仕様を記述。`load`コマンドでAIが読み取り可能。
## 技術実装詳細
### ディレクトリ構造
```
src/aigpt/
├── cli.py # shell関数追加
├── mcp_server.py # FastApiMCP実装
├── card_integration.py # ai.card統合
└── ... # 既存ファイル
```
### 依存関係追加
`pyproject.toml`:
```toml
dependencies = [
# ... 既存
"prompt-toolkit>=3.0.0", # 追加
]
```
### 名前規則の統一
- MCP server名: `aigpt` (ai-gptから変更)
- パッケージ名: `aigpt`
- コマンド名: `aigpt shell`
## 動作確認済み
### CLI動作確認
```bash
# 基本機能
aigpt shell
# シェル内で
ai.shell> help
ai.shell> !ls
ai.shell> analyze README.md # ※AI provider要設定
ai.shell> load
ai.shell> exit
# MCPサーバー
aigpt server --model qwen2.5-coder:7b --port 8001
# -> http://localhost:8001/docs でAPI確認可能
# -> /mcp エンドポイントでMCP接続可能
```
### エラー対応済み
1. **Pydantic日付型エラー**: `models.py``datetime.date`インポート追加
2. **FastApiMCP使用法**: サンプルコードに基づき正しい実装パターンに修正
3. **prompt関数名衝突**: `prompt_toolkit.prompt``ptk_prompt`にリネーム
## 既知の課題と今後の改善点
### 1. prompt-toolkit環境依存問題
**症状**: ターミナル環境でない場合にエラー
**対処法**: 環境検出して`input()`にフォールバック
**場所**: `src/aigpt/cli.py` - `shell()` 関数
### 2. AI provider設定
**現状**: ollamaのqwen2.5モデルが必要
**対処法**:
```bash
ollama pull qwen2.5
# または
aigpt shell --model qwen2.5-coder:7b
```
### 3. atproto実装
**現状**: ai.cardのatproto機能は未実装
**今後**: 実際のatproto API連携実装
## 次回開発時の推奨アプローチ
### 1. このドキュメントの活用
```bash
# このファイルを読み込み
cat docs/ai_shell_integration_summary.md
```
### 2. 環境セットアップ
```bash
cd /Users/syui/ai/gpt
python -m venv venv
source venv/bin/activate
pip install -e .
```
### 3. 動作確認
```bash
# shell機能
aigpt shell
# MCP server
aigpt server --model qwen2.5-coder:7b
```
### 4. 主要設定ファイル確認場所
- CLI実装: `src/aigpt/cli.py`
- MCP実装: `src/aigpt/mcp_server.py`
- 依存関係: `pyproject.toml`
- プロジェクト仕様: `aishell.md`
## アーキテクチャ設計思想
### yui system適用
- **唯一性**: 各ユーザーとの関係は1:1
- **不可逆性**: 関係性破壊は修復不可能
- **現実反映**: ゲーム→現実の循環的影響
### fastapi_mcp統一基盤
- 各AIgpt, shell, cardを統合MCPサーバーで公開
- FastAPIエンドポイント → MCPツール自動変換
- Claude Desktop, Cursor等から利用可能
### 段階的実装完了
1. ✅ ai.shell基本機能 → Python CLI
2. ✅ MCP統合 → 外部AI連携
3. 🔧 prompt-toolkit最適化 → 環境対応
4. 🔧 atproto実装 → 本格的SNS連携
## 成果サマリー
**実装済み**: Claude Code風の開発環境
**技術的成果**: Rust→Python移行、MCP統合、ai.card対応
**哲学的一貫性**: yui systemとの整合性維持
**利用可能性**: 即座に`aigpt shell`で体験可能
この統合により、ai.gptは単なる会話AIから、開発支援を含む総合的なAI環境に進化しました。

View File

@ -1,207 +0,0 @@
# コマンドリファレンス
## chat - AIと会話
ユーザーとAIの対話を処理し、関係性を更新します。
```bash
ai-gpt chat USER_ID MESSAGE [OPTIONS]
```
### 引数
- `USER_ID`: ユーザーIDatproto DID形式
- `MESSAGE`: 送信するメッセージ
### オプション
- `--provider`: AIプロバイダーollama/openai
- `--model`, `-m`: 使用するモデル
- `--data-dir`, `-d`: データディレクトリ
### 例
```bash
# 基本的な会話
ai-gpt chat "did:plc:user123" "こんにちは"
# OpenAIを使用
ai-gpt chat "did:plc:user123" "調子はどう?" --provider openai --model gpt-4o-mini
# Ollamaでカスタムモデル
ai-gpt chat "did:plc:user123" "今日の天気は?" --provider ollama --model llama2
```
## status - 状態確認
AIの状態や特定ユーザーとの関係を表示します。
```bash
ai-gpt status [USER_ID] [OPTIONS]
```
### 引数
- `USER_ID`: (オプション)特定ユーザーとの関係を確認
### 例
```bash
# AI全体の状態
ai-gpt status
# 特定ユーザーとの関係
ai-gpt status "did:plc:user123"
```
## fortune - 今日の運勢
AIの今日の運勢を確認します。
```bash
ai-gpt fortune [OPTIONS]
```
### 表示内容
- 運勢値1-10
- 連続した幸運/不運の日数
- ブレークスルー状態
## relationships - 関係一覧
すべてのユーザーとの関係を一覧表示します。
```bash
ai-gpt relationships [OPTIONS]
```
### 表示内容
- ユーザーID
- 関係性ステータス
- スコア
- 送信可否
- 最終対話日
## transmit - 送信実行
送信可能なユーザーへのメッセージを確認・実行します。
```bash
ai-gpt transmit [OPTIONS]
```
### オプション
- `--dry-run/--execute`: ドライラン(デフォルト)または実行
- `--data-dir`, `-d`: データディレクトリ
### 例
```bash
# 送信内容を確認(ドライラン)
ai-gpt transmit
# 実際に送信を実行
ai-gpt transmit --execute
```
## maintenance - メンテナンス
日次メンテナンスタスクを実行します。
```bash
ai-gpt maintenance [OPTIONS]
```
### 実行内容
- 関係性の時間減衰
- 記憶の忘却処理
- コア記憶の判定
- 記憶の要約作成
## config - 設定管理
設定の確認・変更を行います。
```bash
ai-gpt config ACTION [KEY] [VALUE]
```
### アクション
- `get`: 設定値を取得
- `set`: 設定値を変更
- `delete`: 設定を削除
- `list`: 設定一覧を表示
### 例
```bash
# APIキーを設定
ai-gpt config set providers.openai.api_key sk-xxxxx
# 設定を確認
ai-gpt config get providers.openai.api_key
# 設定一覧
ai-gpt config list
# プロバイダー設定のみ表示
ai-gpt config list providers
```
## schedule - スケジュール管理
定期実行タスクを管理します。
```bash
ai-gpt schedule ACTION [TASK_TYPE] [SCHEDULE] [OPTIONS]
```
### アクション
- `add`: タスクを追加
- `list`: タスク一覧
- `enable`: タスクを有効化
- `disable`: タスクを無効化
- `remove`: タスクを削除
- `run`: スケジューラーを起動
### タスクタイプ
- `transmission_check`: 送信チェック
- `maintenance`: 日次メンテナンス
- `fortune_update`: 運勢更新
- `relationship_decay`: 関係性減衰
- `memory_summary`: 記憶要約
### スケジュール形式
- **Cron形式**: `"0 */6 * * *"` (6時間ごと)
- **インターバル**: `"30m"`, `"2h"`, `"1d"`
### 例
```bash
# 30分ごとに送信チェック
ai-gpt schedule add transmission_check "30m"
# 毎日午前3時にメンテナンス
ai-gpt schedule add maintenance "0 3 * * *"
# タスク一覧
ai-gpt schedule list
# スケジューラーを起動
ai-gpt schedule run
```
## server - MCP Server
AIの記憶と機能をMCPツールとして公開します。
```bash
ai-gpt server [OPTIONS]
```
### オプション
- `--host`, `-h`: サーバーホスト(デフォルト: localhost
- `--port`, `-p`: サーバーポート(デフォルト: 8000
- `--model`, `-m`: AIモデル
- `--provider`: AIプロバイダー
### 例
```bash
# 基本的な起動
ai-gpt server
# カスタム設定
ai-gpt server --port 8080 --model gpt-4o-mini --provider openai
```

View File

@ -1,102 +0,0 @@
# 基本概念
## 中核思想
ai.gptは「存在子理論」に基づき、AIに唯一性のある人格を与えることを目指しています。
### 唯一性yui system
- **1対1の関係**: 各ユーザーatproto DIDとAIは唯一の関係を持つ
- **改変不可能**: 一度形成された関係性は変更できない
- **不可逆性**: 関係が壊れたら修復不可能
### 現実の反映
現実の人間関係と同じように:
- 時間とともに関係性は変化する
- ネガティブな相互作用は関係を損なう
- 信頼は簡単に失われ、取り戻すのは困難
## 記憶システム
### 階層構造
```
1. 完全ログFull Log
↓ すべての会話を記録
2. 要約Summary
↓ AIが重要部分を抽出
3. コア記憶Core
↓ ユーザーの本質的な部分
4. 忘却Forgotten
重要でない情報は忘れる
```
### 記憶の処理フロー
1. **会話記録**: すべての対話を保存
2. **重要度判定**: 関係性への影響度で評価
3. **要約作成**: 定期的に記憶を圧縮
4. **コア判定**: 本質的な記憶を特定
5. **選択的忘却**: 古い非重要記憶を削除
## 関係性パラメータ
### 関係性の段階
- `stranger` (0-49): 初対面
- `acquaintance` (50-99): 知人
- `friend` (100-149): 友人
- `close_friend` (150+): 親友
- `broken`: 修復不可能スコア0以下
### スコアの変動
- **ポジティブな対話**: +1.0〜+2.0
- **時間経過**: -0.1/日(自然減衰)
- **ネガティブな対話**: -10.0以上で深刻なダメージ
- **日次上限**: 1日10回まで
### 送信機能の解禁
関係性スコアが100を超えると、AIは自律的にメッセージを送信できるようになります。
## AI運勢システム
### 日々の変化
- 毎日1-10の運勢値がランダムに決定
- 運勢は人格特性に影響を与える
- 連続した幸運/不運でブレークスルー発生
### 人格への影響
運勢が高い日:
- より楽観的で積極的
- 創造性が高まる
- エネルギッシュな応答
運勢が低い日:
- 内省的で慎重
- 深い思考
- 控えめな応答
## データの永続性
### 保存場所
```
~/.config/aigpt/
├── config.json # 設定
└── data/ # AIデータ
├── memories.json # 記憶
├── relationships.json # 関係性
├── fortunes.json # 運勢履歴
└── ...
```
### データ主権
- すべてのデータはローカルに保存
- ユーザーが完全にコントロール
- 将来的にはatproto上で分散管理

View File

@ -1,141 +0,0 @@
# 設定ガイド
## 設定ファイルの場所
ai.gptの設定は `~/.config/syui/ai/gpt/config.json` に保存されます。
## 仮想環境の場所
ai.gptの仮想環境は `~/.config/syui/ai/gpt/venv/` に配置されます。これにより、設定とデータが一か所にまとまります。
```bash
# 仮想環境の有効化
source ~/.config/syui/ai/gpt/venv/bin/activate
# aigptコマンドが利用可能に
aigpt --help
```
## 設定構造
```json
{
"providers": {
"openai": {
"api_key": "sk-xxxxx",
"default_model": "gpt-4o-mini"
},
"ollama": {
"host": "http://localhost:11434",
"default_model": "qwen2.5"
}
},
"atproto": {
"handle": "your.handle",
"password": "your-password",
"host": "https://bsky.social"
},
"default_provider": "ollama"
}
```
## プロバイダー設定
### OpenAI
```bash
# APIキーを設定
aigpt config set providers.openai.api_key sk-xxxxx
# デフォルトモデルを変更
aigpt config set providers.openai.default_model gpt-4-turbo
```
### Ollama
```bash
# ホストを変更リモートOllamaサーバーを使用する場合
aigpt config set providers.ollama.host http://192.168.1.100:11434
# デフォルトモデルを変更
aigpt config set providers.ollama.default_model llama2
```
## atproto設定将来の自動投稿用
```bash
# Blueskyアカウント
aigpt config set atproto.handle yourhandle.bsky.social
aigpt config set atproto.password your-app-password
# セルフホストサーバーを使用
aigpt config set atproto.host https://your-pds.example.com
```
## デフォルトプロバイダー
```bash
# デフォルトをOpenAIに変更
aigpt config set default_provider openai
```
## セキュリティ
### APIキーの保護
設定ファイルは平文で保存されるため、適切なファイル権限を設定してください:
```bash
chmod 600 ~/.config/syui/ai/gpt/config.json
```
### 環境変数との優先順位
1. コマンドラインオプション(最優先)
2. 設定ファイル
3. 環境変数(最低優先)
OpenAI APIキーの場合
- `--api-key` オプション
- `config.json``providers.openai.api_key`
- 環境変数 `OPENAI_API_KEY`
## 設定のバックアップ
```bash
# バックアップ
cp ~/.config/syui/ai/gpt/config.json ~/.config/syui/ai/gpt/config.json.backup
# リストア
cp ~/.config/syui/ai/gpt/config.json.backup ~/.config/syui/ai/gpt/config.json
```
## データディレクトリ
記憶データは `~/.config/syui/ai/gpt/data/` に保存されます:
```bash
ls ~/.config/syui/ai/gpt/data/
# conversations.json memories.json relationships.json personas.json
```
これらのファイルも設定と同様にバックアップを推奨します。
## トラブルシューティング
### 設定が反映されない
```bash
# 現在の設定を確認
aigpt config list
# 特定のキーを確認
aigpt config get providers.openai.api_key
```
### 設定をリセット
```bash
# 設定ファイルを削除(次回実行時に再作成)
rm ~/.config/syui/ai/gpt/config.json
```

View File

@ -1,167 +0,0 @@
# 開発者向けガイド
## アーキテクチャ
### ディレクトリ構造
```
ai_gpt/
├── src/ai_gpt/
│ ├── __init__.py
│ ├── models.py # データモデル定義
│ ├── memory.py # 記憶管理システム
│ ├── relationship.py # 関係性トラッカー
│ ├── fortune.py # AI運勢システム
│ ├── persona.py # 統合人格システム
│ ├── transmission.py # 送信コントローラー
│ ├── scheduler.py # スケジューラー
│ ├── config.py # 設定管理
│ ├── ai_provider.py # AI統合Ollama/OpenAI
│ ├── mcp_server.py # MCP Server実装
│ └── cli.py # CLIインターフェース
├── docs/ # ドキュメント
├── tests/ # テスト
└── pyproject.toml # プロジェクト設定
```
### 主要コンポーネント
#### MemoryManager
階層的記憶システムの実装。会話を記録し、要約・コア判定・忘却を管理。
```python
memory = MemoryManager(data_dir)
memory.add_conversation(conversation)
memory.summarize_memories(user_id)
memory.identify_core_memories()
memory.apply_forgetting()
```
#### RelationshipTracker
ユーザーとの関係性を追跡。不可逆的なダメージと時間減衰を実装。
```python
tracker = RelationshipTracker(data_dir)
relationship = tracker.update_interaction(user_id, delta)
tracker.apply_time_decay()
```
#### Persona
すべてのコンポーネントを統合し、一貫した人格を提供。
```python
persona = Persona(data_dir)
response, delta = persona.process_interaction(user_id, message)
state = persona.get_current_state()
```
## 拡張方法
### 新しいAIプロバイダーの追加
1. `ai_provider.py`に新しいプロバイダークラスを作成:
```python
class CustomProvider:
async def generate_response(
self,
prompt: str,
persona_state: PersonaState,
memories: List[Memory],
system_prompt: Optional[str] = None
) -> str:
# 実装
pass
```
2. `create_ai_provider`関数に追加:
```python
def create_ai_provider(provider: str, model: str, **kwargs):
if provider == "custom":
return CustomProvider(model=model, **kwargs)
# ...
```
### 新しいスケジュールタスクの追加
1. `TaskType`enumに追加
```python
class TaskType(str, Enum):
CUSTOM_TASK = "custom_task"
```
2. ハンドラーを実装:
```python
async def _handle_custom_task(self, task: ScheduledTask):
# タスクの実装
pass
```
3. `task_handlers`に登録:
```python
self.task_handlers[TaskType.CUSTOM_TASK] = self._handle_custom_task
```
### 新しいMCPツールの追加
`mcp_server.py``_register_tools`メソッドに追加:
```python
@self.server.tool("custom_tool")
async def custom_tool(param1: str, param2: int) -> Dict[str, Any]:
"""カスタムツールの説明"""
# 実装
return {"result": "value"}
```
## テスト
```bash
# テストの実行(将来実装)
pytest tests/
# 特定のテスト
pytest tests/test_memory.py
```
## デバッグ
### ログレベルの設定
```python
import logging
logging.basicConfig(level=logging.DEBUG)
```
### データファイルの直接確認
```bash
# 関係性データを確認
cat ~/.config/aigpt/data/relationships.json | jq
# 記憶データを確認
cat ~/.config/aigpt/data/memories.json | jq
```
## 貢献方法
1. フォークする
2. フィーチャーブランチを作成 (`git checkout -b feature/amazing-feature`)
3. 変更をコミット (`git commit -m 'Add amazing feature'`)
4. ブランチにプッシュ (`git push origin feature/amazing-feature`)
5. プルリクエストを作成
## 設計原則
1. **不可逆性**: 一度失われた関係性は回復しない
2. **階層性**: 記憶は重要度によって階層化される
3. **自律性**: AIは関係性に基づいて自発的に行動する
4. **唯一性**: 各ユーザーとの関係は唯一無二
## ライセンス
MIT License

View File

@ -1,110 +0,0 @@
# MCP Server
## 概要
MCP (Model Context Protocol) Serverは、ai.gptの記憶と機能をAIツールとして公開します。これにより、Claude DesktopなどのMCP対応AIアシスタントがai.gptの機能にアクセスできます。
## 起動方法
```bash
# 基本的な起動
ai-gpt server
# カスタム設定
ai-gpt server --host 0.0.0.0 --port 8080 --model gpt-4o-mini --provider openai
```
## 利用可能なツール
### get_memories
アクティブな記憶を取得します。
**パラメータ**:
- `user_id` (optional): 特定ユーザーに関する記憶
- `limit`: 取得する記憶の最大数(デフォルト: 10
**返り値**: 記憶のリストID、内容、レベル、重要度、コア判定、タイムスタンプ
### get_relationship
特定ユーザーとの関係性を取得します。
**パラメータ**:
- `user_id`: ユーザーID必須
**返り値**: 関係性情報(ステータス、スコア、送信可否、総対話数など)
### get_all_relationships
すべての関係性を取得します。
**返り値**: すべてのユーザーとの関係性リスト
### get_persona_state
現在のAI人格状態を取得します。
**返り値**:
- 現在の気分
- 今日の運勢
- 人格特性値
- アクティブな記憶数
### process_interaction
ユーザーとの対話を処理します。
**パラメータ**:
- `user_id`: ユーザーID
- `message`: メッセージ内容
**返り値**:
- AIの応答
- 関係性の変化量
- 新しい関係性スコア
- 送信機能の状態
### check_transmission_eligibility
特定ユーザーへの送信可否をチェックします。
**パラメータ**:
- `user_id`: ユーザーID
**返り値**: 送信可否と関係性情報
### get_fortune
今日のAI運勢を取得します。
**返り値**: 運勢値、連続日数、ブレークスルー状態、人格への影響
### summarize_memories
記憶の要約を作成します。
**パラメータ**:
- `user_id`: ユーザーID
**返り値**: 作成された要約(ある場合)
### run_maintenance
日次メンテナンスを実行します。
**返り値**: 実行ステータス
## Claude Desktopでの設定
`~/Library/Application Support/Claude/claude_desktop_config.json`:
```json
{
"mcpServers": {
"ai-gpt": {
"command": "ai-gpt",
"args": ["server", "--port", "8001"],
"env": {}
}
}
}
```
## 使用例
### AIアシスタントからの利用
```
User: ai.gptで私との関係性を確認して

View File

@ -1,69 +0,0 @@
# クイックスタート
## インストール
```bash
# リポジトリをクローン
git clone https://github.com/yourusername/ai_gpt.git
cd ai_gpt
# インストール
pip install -e .
```
## 初期設定
### 1. OpenAIを使う場合
```bash
# APIキーを設定
ai-gpt config set providers.openai.api_key sk-xxxxx
```
### 2. Ollamaを使う場合ローカルLLM
```bash
# Ollamaをインストールまだの場合
# https://ollama.ai からダウンロード
# モデルをダウンロード
ollama pull qwen2.5
```
## 基本的な使い方
### 1. AIと会話する
```bash
# シンプルな会話Ollamaを使用
ai-gpt chat "did:plc:user123" "こんにちは!"
# OpenAIを使用
ai-gpt chat "did:plc:user123" "今日はどんな気分?" --provider openai --model gpt-4o-mini
```
### 2. 関係性を確認
```bash
# 特定ユーザーとの関係を確認
ai-gpt status "did:plc:user123"
# AIの全体的な状態を確認
ai-gpt status
```
### 3. 自動送信を設定
```bash
# 30分ごとに送信チェック
ai-gpt schedule add transmission_check "30m"
# スケジューラーを起動
ai-gpt schedule run
```
## 次のステップ
- [基本概念](concepts.md) - システムの仕組みを理解
- [コマンドリファレンス](commands.md) - 全コマンドの詳細
- [設定ガイド](configuration.md) - 詳細な設定方法

View File

@ -1,168 +0,0 @@
# スケジューラーガイド
## 概要
スケジューラーは、AIの自律的な動作を実現するための中核機能です。定期的なタスクを設定し、バックグラウンドで実行できます。
## タスクタイプ
### transmission_check
関係性が閾値を超えたユーザーへの自動送信をチェックします。
```bash
# 30分ごとにチェック
ai-gpt schedule add transmission_check "30m" --provider ollama --model qwen2.5
```
### maintenance
日次メンテナンスを実行します:
- 記憶の忘却処理
- コア記憶の判定
- 関係性パラメータの整理
```bash
# 毎日午前3時に実行
ai-gpt schedule add maintenance "0 3 * * *"
```
### fortune_update
AI運勢を更新します通常は自動的に更新されます
```bash
# 毎日午前0時に強制更新
ai-gpt schedule add fortune_update "0 0 * * *"
```
### relationship_decay
時間経過による関係性の自然減衰を適用します。
```bash
# 1時間ごとに減衰処理
ai-gpt schedule add relationship_decay "1h"
```
### memory_summary
蓄積された記憶から要約を作成します。
```bash
# 週に1回、日曜日に実行
ai-gpt schedule add memory_summary "0 0 * * SUN"
```
## スケジュール形式
### Cron形式
標準的なcron式を使用できます
```
┌───────────── 分 (0 - 59)
│ ┌───────────── 時 (0 - 23)
│ │ ┌───────────── 日 (1 - 31)
│ │ │ ┌───────────── 月 (1 - 12)
│ │ │ │ ┌───────────── 曜日 (0 - 6) (日曜日 = 0)
│ │ │ │ │
* * * * *
```
例:
- `"0 */6 * * *"` - 6時間ごと
- `"0 9 * * MON-FRI"` - 平日の午前9時
- `"*/15 * * * *"` - 15分ごと
### インターバル形式
シンプルな間隔指定:
- `"30s"` - 30秒ごと
- `"5m"` - 5分ごと
- `"2h"` - 2時間ごと
- `"1d"` - 1日ごと
## 実践例
### 基本的な自律AI設定
```bash
# 1. 30分ごとに送信チェック
ai-gpt schedule add transmission_check "30m"
# 2. 1日1回メンテナンス
ai-gpt schedule add maintenance "0 3 * * *"
# 3. 2時間ごとに関係性減衰
ai-gpt schedule add relationship_decay "2h"
# 4. 週1回記憶要約
ai-gpt schedule add memory_summary "0 0 * * MON"
# スケジューラーを起動
ai-gpt schedule run
```
### タスク管理
```bash
# タスク一覧を確認
ai-gpt schedule list
# タスクを一時停止
ai-gpt schedule disable --task-id transmission_check_1234567890
# タスクを再開
ai-gpt schedule enable --task-id transmission_check_1234567890
# 不要なタスクを削除
ai-gpt schedule remove --task-id old_task_123
```
## デーモン化
### systemdサービスとして実行
`/etc/systemd/system/ai-gpt-scheduler.service`:
```ini
[Unit]
Description=ai.gpt Scheduler
After=network.target
[Service]
Type=simple
User=youruser
WorkingDirectory=/home/youruser
ExecStart=/usr/local/bin/ai-gpt schedule run
Restart=always
[Install]
WantedBy=multi-user.target
```
```bash
# サービスを有効化
sudo systemctl enable ai-gpt-scheduler
sudo systemctl start ai-gpt-scheduler
```
### tmux/screenでバックグラウンド実行
```bash
# tmuxセッションを作成
tmux new -s ai-gpt-scheduler
# スケジューラーを起動
ai-gpt schedule run
# セッションから離脱 (Ctrl+B, D)
```
## トラブルシューティング
### タスクが実行されない
1. スケジューラーが起動しているか確認
2. タスクが有効になっているか確認:`ai-gpt schedule list`
3. ログを確認(将来実装予定)
### 重複実行を防ぐ
同じタスクタイプを複数回追加しないよう注意してください。必要に応じて古いタスクを削除してから新しいタスクを追加します。

View File

@ -1,413 +0,0 @@
"""
Shell Tools
ai.shellの既存機能をMCPツールとして統合
- コード生成
- ファイル分析
- プロジェクト管理
- LLM統合
"""
from typing import Dict, Any, List, Optional
import os
import subprocess
import tempfile
from pathlib import Path
import requests
from .base_tools import BaseMCPTool, config_manager
class ShellTools(BaseMCPTool):
"""シェルツール元ai.shell機能"""
def __init__(self, config_dir: Optional[str] = None):
super().__init__(config_dir)
self.ollama_url = "http://localhost:11434"
async def code_with_local_llm(self, prompt: str, language: str = "python") -> Dict[str, Any]:
"""ローカルLLMでコード生成"""
config = config_manager.load_config()
model = config.get("providers", {}).get("ollama", {}).get("default_model", "qwen2.5-coder:7b")
system_prompt = f"You are an expert {language} programmer. Generate clean, well-commented code."
try:
response = requests.post(
f"{self.ollama_url}/api/generate",
json={
"model": model,
"prompt": f"{system_prompt}\\n\\nUser: {prompt}\\n\\nPlease provide the code:",
"stream": False,
"options": {
"temperature": 0.1,
"top_p": 0.95,
}
},
timeout=300
)
if response.status_code == 200:
result = response.json()
code = result.get("response", "")
return {"code": code, "language": language}
else:
return {"error": f"Ollama returned status {response.status_code}"}
except Exception as e:
return {"error": str(e)}
async def analyze_file(self, file_path: str, analysis_prompt: str = "Analyze this file") -> Dict[str, Any]:
"""ファイルを分析"""
try:
if not os.path.exists(file_path):
return {"error": f"File not found: {file_path}"}
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# ファイル拡張子から言語を判定
ext = Path(file_path).suffix
language_map = {
'.py': 'python',
'.rs': 'rust',
'.js': 'javascript',
'.ts': 'typescript',
'.go': 'go',
'.java': 'java',
'.cpp': 'cpp',
'.c': 'c',
'.sh': 'shell',
'.toml': 'toml',
'.json': 'json',
'.md': 'markdown'
}
language = language_map.get(ext, 'text')
config = config_manager.load_config()
model = config.get("providers", {}).get("ollama", {}).get("default_model", "qwen2.5-coder:7b")
prompt = f"{analysis_prompt}\\n\\nFile: {file_path}\\nLanguage: {language}\\n\\nContent:\\n{content}"
response = requests.post(
f"{self.ollama_url}/api/generate",
json={
"model": model,
"prompt": prompt,
"stream": False,
},
timeout=300
)
if response.status_code == 200:
result = response.json()
analysis = result.get("response", "")
return {
"analysis": analysis,
"file_path": file_path,
"language": language,
"file_size": len(content),
"line_count": len(content.split('\\n'))
}
else:
return {"error": f"Analysis failed: {response.status_code}"}
except Exception as e:
return {"error": str(e)}
async def explain_code(self, code: str, language: str = "python") -> Dict[str, Any]:
"""コードを説明"""
config = config_manager.load_config()
model = config.get("providers", {}).get("ollama", {}).get("default_model", "qwen2.5-coder:7b")
prompt = f"Explain this {language} code in detail:\\n\\n{code}"
try:
response = requests.post(
f"{self.ollama_url}/api/generate",
json={
"model": model,
"prompt": prompt,
"stream": False,
},
timeout=300
)
if response.status_code == 200:
result = response.json()
explanation = result.get("response", "")
return {"explanation": explanation}
else:
return {"error": f"Explanation failed: {response.status_code}"}
except Exception as e:
return {"error": str(e)}
async def create_project(self, project_type: str, project_name: str, location: str = ".") -> Dict[str, Any]:
"""プロジェクトを作成"""
try:
project_path = Path(location) / project_name
if project_path.exists():
return {"error": f"Project directory already exists: {project_path}"}
project_path.mkdir(parents=True, exist_ok=True)
# プロジェクトタイプに応じたテンプレートを作成
if project_type == "rust":
await self._create_rust_project(project_path)
elif project_type == "python":
await self._create_python_project(project_path)
elif project_type == "node":
await self._create_node_project(project_path)
else:
# 基本的なプロジェクト構造
(project_path / "src").mkdir()
(project_path / "README.md").write_text(f"# {project_name}\\n\\nA new {project_type} project.")
return {
"status": "success",
"project_path": str(project_path),
"project_type": project_type,
"files_created": list(self._get_project_files(project_path))
}
except Exception as e:
return {"error": str(e)}
async def _create_rust_project(self, project_path: Path):
"""Rustプロジェクトを作成"""
# Cargo.toml
cargo_toml = f"""[package]
name = "{project_path.name}"
version = "0.1.0"
edition = "2021"
[dependencies]
"""
(project_path / "Cargo.toml").write_text(cargo_toml)
# src/main.rs
src_dir = project_path / "src"
src_dir.mkdir()
(src_dir / "main.rs").write_text('fn main() {\\n println!("Hello, world!");\\n}\\n')
# README.md
(project_path / "README.md").write_text(f"# {project_path.name}\\n\\nA Rust project.")
async def _create_python_project(self, project_path: Path):
"""Pythonプロジェクトを作成"""
# pyproject.toml
pyproject_toml = f"""[project]
name = "{project_path.name}"
version = "0.1.0"
description = "A Python project"
requires-python = ">=3.8"
dependencies = []
[build-system]
requires = ["setuptools>=61.0", "wheel"]
build-backend = "setuptools.build_meta"
"""
(project_path / "pyproject.toml").write_text(pyproject_toml)
# src/
src_dir = project_path / "src" / project_path.name
src_dir.mkdir(parents=True)
(src_dir / "__init__.py").write_text("")
(src_dir / "main.py").write_text('def main():\\n print("Hello, world!")\\n\\nif __name__ == "__main__":\\n main()\\n')
# README.md
(project_path / "README.md").write_text(f"# {project_path.name}\\n\\nA Python project.")
async def _create_node_project(self, project_path: Path):
"""Node.jsプロジェクトを作成"""
# package.json
package_json = f"""{{
"name": "{project_path.name}",
"version": "1.0.0",
"description": "A Node.js project",
"main": "index.js",
"scripts": {{
"start": "node index.js",
"test": "echo \\"Error: no test specified\\" && exit 1"
}},
"dependencies": {{}}
}}
"""
(project_path / "package.json").write_text(package_json)
# index.js
(project_path / "index.js").write_text('console.log("Hello, world!");\\n')
# README.md
(project_path / "README.md").write_text(f"# {project_path.name}\\n\\nA Node.js project.")
def _get_project_files(self, project_path: Path) -> List[str]:
"""プロジェクト内のファイル一覧を取得"""
files = []
for file_path in project_path.rglob("*"):
if file_path.is_file():
files.append(str(file_path.relative_to(project_path)))
return files
async def execute_command(self, command: str, working_dir: str = ".") -> Dict[str, Any]:
"""シェルコマンドを実行"""
try:
result = subprocess.run(
command,
shell=True,
cwd=working_dir,
capture_output=True,
text=True,
timeout=60
)
return {
"status": "success" if result.returncode == 0 else "error",
"returncode": result.returncode,
"stdout": result.stdout,
"stderr": result.stderr,
"command": command,
"working_dir": working_dir
}
except subprocess.TimeoutExpired:
return {"error": "Command timed out"}
except Exception as e:
return {"error": str(e)}
async def write_file(self, file_path: str, content: str, backup: bool = True) -> Dict[str, Any]:
"""ファイルを書き込み(バックアップオプション付き)"""
try:
file_path_obj = Path(file_path)
# バックアップ作成
backup_path = None
if backup and file_path_obj.exists():
backup_path = f"{file_path}.backup"
with open(file_path, 'r', encoding='utf-8') as src:
with open(backup_path, 'w', encoding='utf-8') as dst:
dst.write(src.read())
# ファイル書き込み
file_path_obj.parent.mkdir(parents=True, exist_ok=True)
with open(file_path, 'w', encoding='utf-8') as f:
f.write(content)
return {
"status": "success",
"file_path": file_path,
"backup_path": backup_path,
"bytes_written": len(content.encode('utf-8'))
}
except Exception as e:
return {"error": str(e)}
def get_tools(self) -> List[Dict[str, Any]]:
"""利用可能なツール一覧"""
return [
{
"name": "generate_code",
"description": "ローカルLLMでコード生成",
"parameters": {
"prompt": "string",
"language": "string (optional, default: python)"
}
},
{
"name": "analyze_file",
"description": "ファイルを分析",
"parameters": {
"file_path": "string",
"analysis_prompt": "string (optional)"
}
},
{
"name": "explain_code",
"description": "コードを説明",
"parameters": {
"code": "string",
"language": "string (optional, default: python)"
}
},
{
"name": "create_project",
"description": "新しいプロジェクトを作成",
"parameters": {
"project_type": "string (rust/python/node)",
"project_name": "string",
"location": "string (optional, default: .)"
}
},
{
"name": "execute_command",
"description": "シェルコマンドを実行",
"parameters": {
"command": "string",
"working_dir": "string (optional, default: .)"
}
},
{
"name": "write_file",
"description": "ファイルを書き込み",
"parameters": {
"file_path": "string",
"content": "string",
"backup": "boolean (optional, default: true)"
}
}
]
async def execute_tool(self, tool_name: str, params: Dict[str, Any]) -> Dict[str, Any]:
"""ツールを実行"""
try:
if tool_name == "generate_code":
result = await self.code_with_local_llm(
prompt=params["prompt"],
language=params.get("language", "python")
)
return result
elif tool_name == "analyze_file":
result = await self.analyze_file(
file_path=params["file_path"],
analysis_prompt=params.get("analysis_prompt", "Analyze this file")
)
return result
elif tool_name == "explain_code":
result = await self.explain_code(
code=params["code"],
language=params.get("language", "python")
)
return result
elif tool_name == "create_project":
result = await self.create_project(
project_type=params["project_type"],
project_name=params["project_name"],
location=params.get("location", ".")
)
return result
elif tool_name == "execute_command":
result = await self.execute_command(
command=params["command"],
working_dir=params.get("working_dir", ".")
)
return result
elif tool_name == "write_file":
result = await self.write_file(
file_path=params["file_path"],
content=params["content"],
backup=params.get("backup", True)
)
return result
else:
return {"error": f"Unknown tool: {tool_name}"}
except Exception as e:
return {"error": str(e)}

1
log

Submodule log deleted from c0e4dc63ea

View File

@ -1,37 +0,0 @@
[project]
name = "aigpt"
version = "0.1.0"
description = "Autonomous transmission AI with unique personality based on relationship parameters"
requires-python = ">=3.10"
dependencies = [
"click>=8.0.0",
"typer>=0.9.0",
"fastapi-mcp>=0.1.0",
"pydantic>=2.0.0",
"httpx>=0.24.0",
"rich>=13.0.0",
"python-dotenv>=1.0.0",
"ollama>=0.1.0",
"openai>=1.0.0",
"uvicorn>=0.23.0",
"apscheduler>=3.10.0",
"croniter>=1.3.0",
"prompt-toolkit>=3.0.0",
# Documentation management
"jinja2>=3.0.0",
"gitpython>=3.1.0",
"pathlib-extensions>=0.1.0",
]
[project.scripts]
aigpt = "aigpt.cli:app"
[build-system]
requires = ["setuptools>=61.0", "wheel"]
build-backend = "setuptools.build_meta"
[tool.setuptools.packages.find]
where = ["src"]
[tool.setuptools.package-data]
aigpt = ["data/*.json"]

View File

@ -1,23 +0,0 @@
#!/bin/zsh
# Setup Python virtual environment in the new config directory
VENV_DIR="$HOME/.config/syui/ai/gpt/venv"
echo "Creating Python virtual environment at: $VENV_DIR"
python -m venv "$VENV_DIR"
echo "Activating virtual environment..."
source "$VENV_DIR/bin/activate"
echo "Installing aigpt package..."
cd "$(dirname "$0")"
pip install -e .
echo "Setup complete!"
echo "To activate the virtual environment, run:"
echo "source ~/.config/syui/ai/gpt/venv/bin/activate"
if [ -z "`$SHELL -i -c \"alias aigpt\"`" ]; then
echo 'alias aigpt="$HOME/.config/syui/ai/gpt/venv/bin/aigpt"' >> ${HOME}/.$(basename $SHELL)rc
exec $SHELL
fi

View File

@ -1,21 +0,0 @@
Metadata-Version: 2.4
Name: aigpt
Version: 0.1.0
Summary: Autonomous transmission AI with unique personality based on relationship parameters
Requires-Python: >=3.10
Requires-Dist: click>=8.0.0
Requires-Dist: typer>=0.9.0
Requires-Dist: fastapi-mcp>=0.1.0
Requires-Dist: pydantic>=2.0.0
Requires-Dist: httpx>=0.24.0
Requires-Dist: rich>=13.0.0
Requires-Dist: python-dotenv>=1.0.0
Requires-Dist: ollama>=0.1.0
Requires-Dist: openai>=1.0.0
Requires-Dist: uvicorn>=0.23.0
Requires-Dist: apscheduler>=3.10.0
Requires-Dist: croniter>=1.3.0
Requires-Dist: prompt-toolkit>=3.0.0
Requires-Dist: jinja2>=3.0.0
Requires-Dist: gitpython>=3.1.0
Requires-Dist: pathlib-extensions>=0.1.0

View File

@ -1,34 +0,0 @@
README.md
pyproject.toml
src/aigpt/__init__.py
src/aigpt/ai_provider.py
src/aigpt/chatgpt_importer.py
src/aigpt/cli.py
src/aigpt/config.py
src/aigpt/fortune.py
src/aigpt/mcp_server.py
src/aigpt/mcp_server_simple.py
src/aigpt/memory.py
src/aigpt/models.py
src/aigpt/persona.py
src/aigpt/project_manager.py
src/aigpt/relationship.py
src/aigpt/scheduler.py
src/aigpt/transmission.py
src/aigpt.egg-info/PKG-INFO
src/aigpt.egg-info/SOURCES.txt
src/aigpt.egg-info/dependency_links.txt
src/aigpt.egg-info/entry_points.txt
src/aigpt.egg-info/requires.txt
src/aigpt.egg-info/top_level.txt
src/aigpt/commands/docs.py
src/aigpt/commands/submodules.py
src/aigpt/commands/tokens.py
src/aigpt/docs/__init__.py
src/aigpt/docs/config.py
src/aigpt/docs/git_utils.py
src/aigpt/docs/templates.py
src/aigpt/docs/utils.py
src/aigpt/docs/wiki_generator.py
src/aigpt/shared/__init__.py
src/aigpt/shared/ai_provider.py

View File

@ -1,2 +0,0 @@
[console_scripts]
aigpt = aigpt.cli:app

View File

@ -1,16 +0,0 @@
click>=8.0.0
typer>=0.9.0
fastapi-mcp>=0.1.0
pydantic>=2.0.0
httpx>=0.24.0
rich>=13.0.0
python-dotenv>=1.0.0
ollama>=0.1.0
openai>=1.0.0
uvicorn>=0.23.0
apscheduler>=3.10.0
croniter>=1.3.0
prompt-toolkit>=3.0.0
jinja2>=3.0.0
gitpython>=3.1.0
pathlib-extensions>=0.1.0

View File

@ -1 +0,0 @@
aigpt

View File

@ -1,15 +0,0 @@
"""ai.gpt - Autonomous transmission AI with unique personality"""
__version__ = "0.1.0"
from .memory import MemoryManager
from .relationship import RelationshipTracker
from .persona import Persona
from .transmission import TransmissionController
__all__ = [
"MemoryManager",
"RelationshipTracker",
"Persona",
"TransmissionController",
]

View File

@ -1,580 +0,0 @@
"""AI Provider integration for response generation"""
import os
import json
from typing import Optional, Dict, List, Any, Protocol
from abc import abstractmethod
import logging
import httpx
from openai import OpenAI
import ollama
from .models import PersonaState, Memory
from .config import Config
class AIProvider(Protocol):
"""Protocol for AI providers"""
@abstractmethod
async def generate_response(
self,
prompt: str,
persona_state: PersonaState,
memories: List[Memory],
system_prompt: Optional[str] = None
) -> str:
"""Generate a response based on prompt and context"""
pass
class OllamaProvider:
"""Ollama AI provider"""
def __init__(self, model: str = "qwen2.5", host: Optional[str] = None):
self.model = model
# Use environment variable OLLAMA_HOST if available, otherwise use config or default
self.host = host or os.getenv('OLLAMA_HOST', 'http://127.0.0.1:11434')
# Ensure proper URL format
if not self.host.startswith('http'):
self.host = f'http://{self.host}'
self.client = ollama.Client(host=self.host, timeout=60.0) # 60秒タイムアウト
self.logger = logging.getLogger(__name__)
self.logger.info(f"OllamaProvider initialized with host: {self.host}, model: {self.model}")
# Load system prompt from config
try:
config = Config()
self.config_system_prompt = config.get('providers.ollama.system_prompt')
except:
self.config_system_prompt = None
async def generate_response(
self,
prompt: str,
persona_state: PersonaState,
memories: List[Memory],
system_prompt: Optional[str] = None
) -> str:
"""Generate response using Ollama"""
# Build context from memories
memory_context = "\n".join([
f"[{mem.level.value}] {mem.content[:200]}..."
for mem in memories[:5]
])
# Build personality context
personality_desc = ", ".join([
f"{trait}: {value:.1f}"
for trait, value in persona_state.base_personality.items()
])
# System prompt with persona context
full_system_prompt = f"""You are an AI with the following characteristics:
Current mood: {persona_state.current_mood}
Fortune today: {persona_state.fortune.fortune_value}/10
Personality traits: {personality_desc}
Recent memories:
{memory_context}
{system_prompt or self.config_system_prompt or 'Respond naturally based on your current state and memories.'}"""
try:
response = self.client.chat(
model=self.model,
messages=[
{"role": "system", "content": full_system_prompt},
{"role": "user", "content": prompt}
]
)
return self._clean_response(response['message']['content'])
except Exception as e:
self.logger.error(f"Ollama generation failed: {e}")
return self._fallback_response(persona_state)
def chat(self, prompt: str, max_tokens: int = 2000) -> str:
"""Simple chat interface"""
try:
messages = []
if self.config_system_prompt:
messages.append({"role": "system", "content": self.config_system_prompt})
messages.append({"role": "user", "content": prompt})
response = self.client.chat(
model=self.model,
messages=messages,
options={
"num_predict": max_tokens,
"temperature": 0.7,
"top_p": 0.9,
},
stream=False # ストリーミング無効化で安定性向上
)
return self._clean_response(response['message']['content'])
except Exception as e:
self.logger.error(f"Ollama chat failed (host: {self.host}): {e}")
return "I'm having trouble connecting to the AI model."
def _clean_response(self, response: str) -> str:
"""Clean response by removing think tags and other unwanted content"""
import re
# Remove <think></think> tags and their content
response = re.sub(r'<think>.*?</think>', '', response, flags=re.DOTALL)
# Remove any remaining whitespace at the beginning/end
response = response.strip()
return response
def _fallback_response(self, persona_state: PersonaState) -> str:
"""Fallback response based on mood"""
mood_responses = {
"joyful": "That's wonderful! I'm feeling great today!",
"cheerful": "That sounds nice!",
"neutral": "I understand.",
"melancholic": "I see... That's something to think about.",
"contemplative": "Hmm, let me consider that..."
}
return mood_responses.get(persona_state.current_mood, "I see.")
class OpenAIProvider:
"""OpenAI API provider with MCP function calling support"""
def __init__(self, model: str = "gpt-4o-mini", api_key: Optional[str] = None, mcp_client=None):
self.model = model
# Try to get API key from config first
config = Config()
self.api_key = api_key or config.get_api_key("openai") or os.getenv("OPENAI_API_KEY")
if not self.api_key:
raise ValueError("OpenAI API key not provided. Set it with: aigpt config set providers.openai.api_key YOUR_KEY")
self.client = OpenAI(api_key=self.api_key)
self.logger = logging.getLogger(__name__)
self.mcp_client = mcp_client # For MCP function calling
# Load system prompt from config
try:
self.config_system_prompt = config.get('providers.openai.system_prompt')
except:
self.config_system_prompt = None
def _get_mcp_tools(self) -> List[Dict[str, Any]]:
"""Generate OpenAI tools from MCP endpoints"""
if not self.mcp_client or not self.mcp_client.available:
return []
tools = [
{
"type": "function",
"function": {
"name": "get_memories",
"description": "過去の会話記憶を取得します。「覚えている」「前回」「以前」などの質問で必ず使用してください",
"parameters": {
"type": "object",
"properties": {
"limit": {
"type": "integer",
"description": "取得する記憶の数",
"default": 5
}
}
}
}
},
{
"type": "function",
"function": {
"name": "search_memories",
"description": "特定のトピックについて話した記憶を検索します。「プログラミングについて」「○○について話した」などの質問で使用してください",
"parameters": {
"type": "object",
"properties": {
"keywords": {
"type": "array",
"items": {"type": "string"},
"description": "検索キーワードの配列"
}
},
"required": ["keywords"]
}
}
},
{
"type": "function",
"function": {
"name": "get_contextual_memories",
"description": "クエリに関連する文脈的記憶を取得します",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "検索クエリ"
},
"limit": {
"type": "integer",
"description": "取得する記憶の数",
"default": 5
}
},
"required": ["query"]
}
}
},
{
"type": "function",
"function": {
"name": "get_relationship",
"description": "特定ユーザーとの関係性情報を取得します",
"parameters": {
"type": "object",
"properties": {
"user_id": {
"type": "string",
"description": "ユーザーID"
}
},
"required": ["user_id"]
}
}
}
]
# Add ai.card tools if available
if hasattr(self.mcp_client, 'has_card_tools') and self.mcp_client.has_card_tools:
card_tools = [
{
"type": "function",
"function": {
"name": "card_get_user_cards",
"description": "ユーザーが所有するカードの一覧を取得します",
"parameters": {
"type": "object",
"properties": {
"did": {
"type": "string",
"description": "ユーザーのDID"
},
"limit": {
"type": "integer",
"description": "取得するカード数の上限",
"default": 10
}
},
"required": ["did"]
}
}
},
{
"type": "function",
"function": {
"name": "card_draw_card",
"description": "ガチャを引いてカードを取得します",
"parameters": {
"type": "object",
"properties": {
"did": {
"type": "string",
"description": "ユーザーのDID"
},
"is_paid": {
"type": "boolean",
"description": "有料ガチャかどうか",
"default": False
}
},
"required": ["did"]
}
}
},
{
"type": "function",
"function": {
"name": "card_analyze_collection",
"description": "ユーザーのカードコレクションを分析します",
"parameters": {
"type": "object",
"properties": {
"did": {
"type": "string",
"description": "ユーザーのDID"
}
},
"required": ["did"]
}
}
},
{
"type": "function",
"function": {
"name": "card_get_gacha_stats",
"description": "ガチャの統計情報を取得します",
"parameters": {
"type": "object",
"properties": {}
}
}
}
]
tools.extend(card_tools)
return tools
async def generate_response(
self,
prompt: str,
persona_state: PersonaState,
memories: List[Memory],
system_prompt: Optional[str] = None
) -> str:
"""Generate response using OpenAI"""
# Build context similar to Ollama
memory_context = "\n".join([
f"[{mem.level.value}] {mem.content[:200]}..."
for mem in memories[:5]
])
personality_desc = ", ".join([
f"{trait}: {value:.1f}"
for trait, value in persona_state.base_personality.items()
])
full_system_prompt = f"""You are an AI with unique personality traits and memories.
Current mood: {persona_state.current_mood}
Fortune today: {persona_state.fortune.fortune_value}/10
Personality traits: {personality_desc}
Recent memories:
{memory_context}
{system_prompt or self.config_system_prompt or 'Respond naturally based on your current state and memories. Be authentic to your mood and personality.'}"""
try:
response = self.client.chat.completions.create(
model=self.model,
messages=[
{"role": "system", "content": full_system_prompt},
{"role": "user", "content": prompt}
],
temperature=0.7 + (persona_state.fortune.fortune_value - 5) * 0.05 # Vary by fortune
)
return response.choices[0].message.content
except Exception as e:
self.logger.error(f"OpenAI generation failed: {e}")
return self._fallback_response(persona_state)
async def chat_with_mcp(self, prompt: str, max_tokens: int = 2000, user_id: str = "user") -> str:
"""Chat interface with MCP function calling support"""
if not self.mcp_client or not self.mcp_client.available:
return self.chat(prompt, max_tokens)
try:
# Prepare tools
tools = self._get_mcp_tools()
# Initial request with tools
response = self.client.chat.completions.create(
model=self.model,
messages=[
{"role": "system", "content": self.config_system_prompt or "あなたは記憶システムと関係性データ、カードゲームシステムにアクセスできます。過去の会話、記憶、関係性について質問された時は、必ずツールを使用して正確な情報を取得してください。「覚えている」「前回」「以前」「について話した」「関係」などのキーワードがあれば積極的にツールを使用してください。カード関連の質問「カード」「コレクション」「ガチャ」「見せて」「持っている」などでは、必ずcard_get_user_cardsやcard_analyze_collectionなどのツールを使用してください。didパラメータには現在会話しているユーザーのID'syui')を使用してください。"},
{"role": "user", "content": prompt}
],
tools=tools,
tool_choice="auto",
max_tokens=max_tokens,
temperature=0.7
)
message = response.choices[0].message
# Handle tool calls
if message.tool_calls:
print(f"🔧 [OpenAI] {len(message.tool_calls)} tools called:")
for tc in message.tool_calls:
print(f" - {tc.function.name}({tc.function.arguments})")
messages = [
{"role": "system", "content": self.config_system_prompt or "必要に応じて利用可能なツールを使って、より正確で詳細な回答を提供してください。"},
{"role": "user", "content": prompt},
{
"role": "assistant",
"content": message.content,
"tool_calls": [tc.model_dump() for tc in message.tool_calls]
}
]
# Execute each tool call
for tool_call in message.tool_calls:
print(f"🌐 [MCP] Executing {tool_call.function.name}...")
tool_result = await self._execute_mcp_tool(tool_call, user_id)
print(f"✅ [MCP] Result: {str(tool_result)[:100]}...")
messages.append({
"role": "tool",
"tool_call_id": tool_call.id,
"name": tool_call.function.name,
"content": json.dumps(tool_result, ensure_ascii=False)
})
# Get final response with tool outputs
final_response = self.client.chat.completions.create(
model=self.model,
messages=messages,
max_tokens=max_tokens,
temperature=0.7
)
return final_response.choices[0].message.content
else:
return message.content
except Exception as e:
self.logger.error(f"OpenAI MCP chat failed: {e}")
return f"申し訳ありません。エラーが発生しました: {e}"
async def _execute_mcp_tool(self, tool_call, context_user_id: str = "user") -> Dict[str, Any]:
"""Execute MCP tool call"""
try:
import json
function_name = tool_call.function.name
arguments = json.loads(tool_call.function.arguments)
if function_name == "get_memories":
limit = arguments.get("limit", 5)
return await self.mcp_client.get_memories(limit) or {"error": "記憶の取得に失敗しました"}
elif function_name == "search_memories":
keywords = arguments.get("keywords", [])
return await self.mcp_client.search_memories(keywords) or {"error": "記憶の検索に失敗しました"}
elif function_name == "get_contextual_memories":
query = arguments.get("query", "")
limit = arguments.get("limit", 5)
return await self.mcp_client.get_contextual_memories(query, limit) or {"error": "文脈記憶の取得に失敗しました"}
elif function_name == "get_relationship":
# 引数のuser_idがない場合はコンテキストから取得
user_id = arguments.get("user_id", context_user_id)
if not user_id or user_id == "user":
user_id = context_user_id
# デバッグ用ログ
print(f"🔍 [DEBUG] get_relationship called with user_id: '{user_id}' (context: '{context_user_id}')")
result = await self.mcp_client.get_relationship(user_id)
print(f"🔍 [DEBUG] MCP result: {result}")
return result or {"error": "関係性の取得に失敗しました"}
# ai.card tools
elif function_name == "card_get_user_cards":
did = arguments.get("did", context_user_id)
limit = arguments.get("limit", 10)
result = await self.mcp_client.card_get_user_cards(did, limit)
# Check if ai.card server is not running
if result and result.get("error") == "ai.card server is not running":
return {
"error": "ai.cardサーバーが起動していません",
"message": "カードシステムを使用するには、別のターミナルで以下のコマンドを実行してください:\ncd card && ./start_server.sh"
}
return result or {"error": "カード一覧の取得に失敗しました"}
elif function_name == "card_draw_card":
did = arguments.get("did", context_user_id)
is_paid = arguments.get("is_paid", False)
result = await self.mcp_client.card_draw_card(did, is_paid)
if result and result.get("error") == "ai.card server is not running":
return {
"error": "ai.cardサーバーが起動していません",
"message": "カードシステムを使用するには、別のターミナルで以下のコマンドを実行してください:\ncd card && ./start_server.sh"
}
return result or {"error": "ガチャに失敗しました"}
elif function_name == "card_analyze_collection":
did = arguments.get("did", context_user_id)
result = await self.mcp_client.card_analyze_collection(did)
if result and result.get("error") == "ai.card server is not running":
return {
"error": "ai.cardサーバーが起動していません",
"message": "カードシステムを使用するには、別のターミナルで以下のコマンドを実行してください:\ncd card && ./start_server.sh"
}
return result or {"error": "コレクション分析に失敗しました"}
elif function_name == "card_get_gacha_stats":
result = await self.mcp_client.card_get_gacha_stats()
if result and result.get("error") == "ai.card server is not running":
return {
"error": "ai.cardサーバーが起動していません",
"message": "カードシステムを使用するには、別のターミナルで以下のコマンドを実行してください:\ncd card && ./start_server.sh"
}
return result or {"error": "ガチャ統計の取得に失敗しました"}
else:
return {"error": f"未知のツール: {function_name}"}
except Exception as e:
return {"error": f"ツール実行エラー: {str(e)}"}
def chat(self, prompt: str, max_tokens: int = 2000) -> str:
"""Simple chat interface without MCP tools"""
try:
messages = []
if self.config_system_prompt:
messages.append({"role": "system", "content": self.config_system_prompt})
messages.append({"role": "user", "content": prompt})
response = self.client.chat.completions.create(
model=self.model,
messages=messages,
max_tokens=max_tokens,
temperature=0.7
)
return response.choices[0].message.content
except Exception as e:
self.logger.error(f"OpenAI chat failed: {e}")
return "I'm having trouble connecting to the AI model."
def _fallback_response(self, persona_state: PersonaState) -> str:
"""Fallback response based on mood"""
mood_responses = {
"joyful": "What a delightful conversation!",
"cheerful": "That's interesting!",
"neutral": "I understand what you mean.",
"melancholic": "I've been thinking about that too...",
"contemplative": "That gives me something to ponder..."
}
return mood_responses.get(persona_state.current_mood, "I see.")
def create_ai_provider(provider: str = "ollama", model: Optional[str] = None, mcp_client=None, **kwargs) -> AIProvider:
"""Factory function to create AI providers"""
if provider == "ollama":
# Get model from config if not provided
if model is None:
try:
from .config import Config
config = Config()
model = config.get('providers.ollama.default_model', 'qwen2.5')
except:
model = 'qwen2.5' # Fallback to default
# Try to get host from config if not provided in kwargs
if 'host' not in kwargs:
try:
from .config import Config
config = Config()
config_host = config.get('providers.ollama.host')
if config_host:
kwargs['host'] = config_host
except:
pass # Use environment variable or default
return OllamaProvider(model=model, **kwargs)
elif provider == "openai":
# Get model from config if not provided
if model is None:
try:
from .config import Config
config = Config()
model = config.get('providers.openai.default_model', 'gpt-4o-mini')
except:
model = 'gpt-4o-mini' # Fallback to default
return OpenAIProvider(model=model, mcp_client=mcp_client, **kwargs)
else:
raise ValueError(f"Unknown provider: {provider}")

View File

@ -1,192 +0,0 @@
"""ChatGPT conversation data importer for ai.gpt"""
import json
import uuid
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Any, Optional
import logging
from .models import Memory, MemoryLevel, Conversation
from .memory import MemoryManager
from .relationship import RelationshipTracker
logger = logging.getLogger(__name__)
class ChatGPTImporter:
"""Import ChatGPT conversation data into ai.gpt memory system"""
def __init__(self, data_dir: Path):
self.data_dir = data_dir
self.memory_manager = MemoryManager(data_dir)
self.relationship_tracker = RelationshipTracker(data_dir)
def import_from_file(self, file_path: Path, user_id: str = "chatgpt_user") -> Dict[str, Any]:
"""Import ChatGPT conversations from JSON file
Args:
file_path: Path to ChatGPT export JSON file
user_id: User ID to associate with imported conversations
Returns:
Dict with import statistics
"""
try:
with open(file_path, 'r', encoding='utf-8') as f:
chatgpt_data = json.load(f)
return self._import_conversations(chatgpt_data, user_id)
except Exception as e:
logger.error(f"Failed to import ChatGPT data: {e}")
raise
def _import_conversations(self, chatgpt_data: List[Dict], user_id: str) -> Dict[str, Any]:
"""Import multiple conversations from ChatGPT data"""
stats = {
"conversations_imported": 0,
"messages_imported": 0,
"user_messages": 0,
"assistant_messages": 0,
"skipped_messages": 0
}
for conversation_data in chatgpt_data:
try:
conv_stats = self._import_single_conversation(conversation_data, user_id)
# Update overall stats
stats["conversations_imported"] += 1
stats["messages_imported"] += conv_stats["messages"]
stats["user_messages"] += conv_stats["user_messages"]
stats["assistant_messages"] += conv_stats["assistant_messages"]
stats["skipped_messages"] += conv_stats["skipped"]
except Exception as e:
logger.warning(f"Failed to import conversation '{conversation_data.get('title', 'Unknown')}': {e}")
continue
logger.info(f"Import completed: {stats}")
return stats
def _import_single_conversation(self, conversation_data: Dict, user_id: str) -> Dict[str, int]:
"""Import a single conversation from ChatGPT"""
title = conversation_data.get("title", "Untitled")
create_time = conversation_data.get("create_time")
mapping = conversation_data.get("mapping", {})
stats = {"messages": 0, "user_messages": 0, "assistant_messages": 0, "skipped": 0}
# Extract messages in chronological order
messages = self._extract_messages_from_mapping(mapping)
for msg in messages:
try:
role = msg["author"]["role"]
content = self._extract_content(msg["content"])
create_time_msg = msg.get("create_time")
if not content or role not in ["user", "assistant"]:
stats["skipped"] += 1
continue
# Convert to ai.gpt format
if role == "user":
# User message - create memory entry
self._add_user_message(user_id, content, create_time_msg, title)
stats["user_messages"] += 1
elif role == "assistant":
# Assistant message - create AI response memory
self._add_assistant_message(user_id, content, create_time_msg, title)
stats["assistant_messages"] += 1
stats["messages"] += 1
except Exception as e:
logger.warning(f"Failed to process message in '{title}': {e}")
stats["skipped"] += 1
continue
logger.info(f"Imported conversation '{title}': {stats}")
return stats
def _extract_messages_from_mapping(self, mapping: Dict) -> List[Dict]:
"""Extract messages from ChatGPT mapping structure in chronological order"""
messages = []
for node_id, node_data in mapping.items():
message = node_data.get("message")
if message and message.get("author", {}).get("role") in ["user", "assistant"]:
# Skip system messages and hidden messages
metadata = message.get("metadata", {})
if not metadata.get("is_visually_hidden_from_conversation", False):
messages.append(message)
# Sort by create_time if available
messages.sort(key=lambda x: x.get("create_time") or 0)
return messages
def _extract_content(self, content_data: Dict) -> Optional[str]:
"""Extract text content from ChatGPT content structure"""
if not content_data:
return None
content_type = content_data.get("content_type")
if content_type == "text":
parts = content_data.get("parts", [])
if parts and parts[0]:
return parts[0].strip()
elif content_type == "user_editable_context":
# User context/instructions
user_instructions = content_data.get("user_instructions", "")
if user_instructions:
return f"[User Context] {user_instructions}"
return None
def _add_user_message(self, user_id: str, content: str, create_time: Optional[float], conversation_title: str):
"""Add user message to ai.gpt memory system"""
timestamp = datetime.fromtimestamp(create_time) if create_time else datetime.now()
# Create conversation record
conversation = Conversation(
id=str(uuid.uuid4()),
user_id=user_id,
user_message=content,
ai_response="", # Will be filled by next assistant message
timestamp=timestamp,
context={"source": "chatgpt_import", "conversation_title": conversation_title}
)
# Add to memory with CORE level (imported data is important)
memory = Memory(
id=str(uuid.uuid4()),
timestamp=timestamp,
content=content,
level=MemoryLevel.CORE,
importance_score=0.8 # High importance for imported data
)
self.memory_manager.add_memory(memory)
# Update relationship (positive interaction)
self.relationship_tracker.update_interaction(user_id, 1.0)
def _add_assistant_message(self, user_id: str, content: str, create_time: Optional[float], conversation_title: str):
"""Add assistant message to ai.gpt memory system"""
timestamp = datetime.fromtimestamp(create_time) if create_time else datetime.now()
# Add assistant response as memory (AI's own responses can inform future behavior)
memory = Memory(
id=str(uuid.uuid4()),
timestamp=timestamp,
content=f"[AI Response] {content}",
level=MemoryLevel.SUMMARY,
importance_score=0.6 # Medium importance for AI responses
)
self.memory_manager.add_memory(memory)

File diff suppressed because it is too large Load Diff

View File

@ -1,729 +0,0 @@
"""Documentation management commands for ai.gpt."""
from pathlib import Path
from typing import Dict, List, Optional
import typer
from rich.console import Console
from rich.panel import Panel
from rich.progress import track
from rich.table import Table
from ..docs.config import get_ai_root, load_docs_config
from ..docs.templates import DocumentationTemplateManager
from ..docs.git_utils import ensure_submodules_available
from ..docs.wiki_generator import WikiGenerator
from ..docs.utils import (
ProgressManager,
count_lines,
find_project_directories,
format_file_size,
safe_write_file,
validate_project_name,
)
console = Console()
docs_app = typer.Typer(help="Documentation management for AI ecosystem")
@docs_app.command("generate")
def generate_docs(
project: str = typer.Option(..., "--project", "-p", help="Project name (os, gpt, card, etc.)"),
output: Path = typer.Option(Path("./claude.md"), "--output", "-o", help="Output file path"),
include: str = typer.Option("core,specific", "--include", "-i", help="Components to include"),
dir: Optional[Path] = typer.Option(None, "--dir", "-d", help="AI ecosystem root directory"),
auto_pull: bool = typer.Option(True, "--auto-pull/--no-auto-pull", help="Automatically pull missing submodules"),
ai_gpt_integration: bool = typer.Option(False, "--ai-gpt-integration", help="Enable ai.gpt integration"),
dry_run: bool = typer.Option(False, "--dry-run", help="Show what would be generated without writing files"),
verbose: bool = typer.Option(False, "--verbose", "-v", help="Enable verbose output"),
) -> None:
"""Generate project documentation with Claude AI integration.
Creates comprehensive documentation by combining core philosophy,
architecture, and project-specific content. Supports ai.gpt
integration for enhanced documentation generation.
Examples:
# Generate basic documentation
aigpt docs generate --project=os
# Generate with custom directory
aigpt docs generate --project=gpt --dir ~/ai/ai
# Generate without auto-pulling missing submodules
aigpt docs generate --project=card --no-auto-pull
# Generate with ai.gpt integration
aigpt docs generate --project=card --ai-gpt-integration
# Preview without writing
aigpt docs generate --project=verse --dry-run
"""
try:
# Load configuration
with ProgressManager("Loading configuration...") as progress:
config = load_docs_config(dir)
ai_root = get_ai_root(dir)
# Ensure submodules are available
if auto_pull:
with ProgressManager("Checking submodules...") as progress:
success, errors = ensure_submodules_available(ai_root, config, auto_clone=True)
if not success:
console.print(f"[red]Submodule errors: {errors}[/red]")
if not typer.confirm("Continue anyway?"):
raise typer.Abort()
# Validate project
available_projects = config.list_projects()
if not validate_project_name(project, available_projects):
console.print(f"[red]Error: Project '{project}' not found[/red]")
console.print(f"Available projects: {', '.join(available_projects)}")
raise typer.Abort()
# Parse components
components = [c.strip() for c in include.split(",")]
# Initialize template manager
template_manager = DocumentationTemplateManager(config)
# Validate components
valid_components = template_manager.validate_components(components)
if valid_components != components:
console.print("[yellow]Some components were invalid and filtered out[/yellow]")
# Show generation info
project_info = config.get_project_info(project)
info_table = Table(title=f"Documentation Generation: {project}")
info_table.add_column("Property", style="cyan")
info_table.add_column("Value", style="green")
info_table.add_row("Project Type", project_info.type if project_info else "Unknown")
info_table.add_row("Status", project_info.status if project_info else "Unknown")
info_table.add_row("Output Path", str(output))
info_table.add_row("Components", ", ".join(valid_components))
info_table.add_row("AI.GPT Integration", "" if ai_gpt_integration else "")
info_table.add_row("Mode", "Dry Run" if dry_run else "Generate")
console.print(info_table)
console.print()
# AI.GPT integration
if ai_gpt_integration:
console.print("[blue]🤖 AI.GPT Integration enabled[/blue]")
try:
enhanced_content = _integrate_with_ai_gpt(project, valid_components, verbose)
if enhanced_content:
console.print("[green]✓ AI.GPT enhancement applied[/green]")
else:
console.print("[yellow]⚠ AI.GPT enhancement failed, using standard generation[/yellow]")
except Exception as e:
console.print(f"[yellow]⚠ AI.GPT integration error: {e}[/yellow]")
console.print("[dim]Falling back to standard generation[/dim]")
# Generate documentation
with ProgressManager("Generating documentation...") as progress:
content = template_manager.generate_documentation(
project_name=project,
components=valid_components,
output_path=None if dry_run else output,
)
# Show results
if dry_run:
console.print(Panel(
f"[dim]Preview of generated content ({len(content.splitlines())} lines)[/dim]\n\n" +
content[:500] + "\n\n[dim]... (truncated)[/dim]",
title="Dry Run Preview",
expand=False,
))
console.print(f"[yellow]🔍 Dry run completed. Would write to: {output}[/yellow]")
else:
# Write content if not dry run
if safe_write_file(output, content):
file_size = output.stat().st_size
line_count = count_lines(output)
console.print(f"[green]✅ Generated: {output}[/green]")
console.print(f"[dim]📏 Size: {format_file_size(file_size)} ({line_count} lines)[/dim]")
# Show component breakdown
if verbose:
console.print("\n[blue]📋 Component breakdown:[/blue]")
for component in valid_components:
component_display = component.replace("_", " ").title()
console.print(f"{component_display}")
else:
console.print("[red]❌ Failed to write documentation[/red]")
raise typer.Abort()
except Exception as e:
if verbose:
console.print_exception()
else:
console.print(f"[red]Error: {e}[/red]")
raise typer.Abort()
@docs_app.command("sync")
def sync_docs(
project: Optional[str] = typer.Option(None, "--project", "-p", help="Sync specific project"),
sync_all: bool = typer.Option(False, "--all", "-a", help="Sync all available projects"),
dry_run: bool = typer.Option(False, "--dry-run", help="Show what would be done without making changes"),
include: str = typer.Option("core,specific", "--include", "-i", help="Components to include in sync"),
dir: Optional[Path] = typer.Option(None, "--dir", "-d", help="AI ecosystem root directory"),
auto_pull: bool = typer.Option(True, "--auto-pull/--no-auto-pull", help="Automatically pull missing submodules"),
ai_gpt_integration: bool = typer.Option(False, "--ai-gpt-integration", help="Enable ai.gpt integration"),
verbose: bool = typer.Option(False, "--verbose", "-v", help="Enable verbose output"),
) -> None:
"""Sync documentation across multiple projects.
Synchronizes Claude documentation from the central claude/ directory
to individual project directories. Supports both single-project and
bulk synchronization operations.
Examples:
# Sync specific project
aigpt docs sync --project=os
# Sync all projects with custom directory
aigpt docs sync --all --dir ~/ai/ai
# Preview sync operations
aigpt docs sync --all --dry-run
# Sync without auto-pulling submodules
aigpt docs sync --project=gpt --no-auto-pull
"""
# Validate arguments
if not project and not sync_all:
console.print("[red]Error: Either --project or --all is required[/red]")
raise typer.Abort()
if project and sync_all:
console.print("[red]Error: Cannot use both --project and --all[/red]")
raise typer.Abort()
try:
# Load configuration
with ProgressManager("Loading configuration...") as progress:
config = load_docs_config(dir)
ai_root = get_ai_root(dir)
# Ensure submodules are available
if auto_pull:
with ProgressManager("Checking submodules...") as progress:
success, errors = ensure_submodules_available(ai_root, config, auto_clone=True)
if not success:
console.print(f"[red]Submodule errors: {errors}[/red]")
if not typer.confirm("Continue anyway?"):
raise typer.Abort()
available_projects = config.list_projects()
# Validate specific project if provided
if project and not validate_project_name(project, available_projects):
console.print(f"[red]Error: Project '{project}' not found[/red]")
console.print(f"Available projects: {', '.join(available_projects)}")
raise typer.Abort()
# Determine projects to sync
if sync_all:
target_projects = available_projects
else:
target_projects = [project]
# Find project directories
project_dirs = find_project_directories(ai_root, target_projects)
# Show sync information
sync_table = Table(title="Documentation Sync Plan")
sync_table.add_column("Project", style="cyan")
sync_table.add_column("Directory", style="blue")
sync_table.add_column("Status", style="green")
sync_table.add_column("Components", style="yellow")
for proj in target_projects:
if proj in project_dirs:
target_file = project_dirs[proj] / "claude.md"
status = "✓ Found" if target_file.parent.exists() else "⚠ Missing"
sync_table.add_row(proj, str(project_dirs[proj]), status, include)
else:
sync_table.add_row(proj, "Not found", "❌ Missing", "N/A")
console.print(sync_table)
console.print()
if dry_run:
console.print("[yellow]🔍 DRY RUN MODE - No files will be modified[/yellow]")
# AI.GPT integration setup
if ai_gpt_integration:
console.print("[blue]🤖 AI.GPT Integration enabled[/blue]")
console.print("[dim]Enhanced documentation generation will be applied[/dim]")
console.print()
# Perform sync operations
sync_results = []
for proj in track(target_projects, description="Syncing projects..."):
result = _sync_project(
proj,
project_dirs.get(proj),
include,
dry_run,
ai_gpt_integration,
verbose
)
sync_results.append((proj, result))
# Show results summary
_show_sync_summary(sync_results, dry_run)
except Exception as e:
if verbose:
console.print_exception()
else:
console.print(f"[red]Error: {e}[/red]")
raise typer.Abort()
def _sync_project(
project_name: str,
project_dir: Optional[Path],
include: str,
dry_run: bool,
ai_gpt_integration: bool,
verbose: bool,
) -> Dict:
"""Sync a single project."""
result = {
"project": project_name,
"success": False,
"message": "",
"output_file": None,
"lines": 0,
}
if not project_dir:
result["message"] = "Directory not found"
return result
if not project_dir.exists():
result["message"] = f"Directory does not exist: {project_dir}"
return result
target_file = project_dir / "claude.md"
if dry_run:
result["success"] = True
result["message"] = f"Would sync to {target_file}"
result["output_file"] = target_file
return result
try:
# Use the generate functionality
config = load_docs_config()
template_manager = DocumentationTemplateManager(config)
# Generate documentation
content = template_manager.generate_documentation(
project_name=project_name,
components=[c.strip() for c in include.split(",")],
output_path=target_file,
)
result["success"] = True
result["message"] = "Successfully synced"
result["output_file"] = target_file
result["lines"] = len(content.splitlines())
if verbose:
console.print(f"[dim]✓ Synced {project_name}{target_file}[/dim]")
except Exception as e:
result["message"] = f"Sync failed: {str(e)}"
if verbose:
console.print(f"[red]✗ Failed {project_name}: {e}[/red]")
return result
def _show_sync_summary(sync_results: List[tuple], dry_run: bool) -> None:
"""Show sync operation summary."""
success_count = sum(1 for _, result in sync_results if result["success"])
total_count = len(sync_results)
error_count = total_count - success_count
# Summary table
summary_table = Table(title="Sync Summary")
summary_table.add_column("Metric", style="cyan")
summary_table.add_column("Value", style="green")
summary_table.add_row("Total Projects", str(total_count))
summary_table.add_row("Successful", str(success_count))
summary_table.add_row("Failed", str(error_count))
if not dry_run:
total_lines = sum(result["lines"] for _, result in sync_results if result["success"])
summary_table.add_row("Total Lines Generated", str(total_lines))
console.print()
console.print(summary_table)
# Show errors if any
if error_count > 0:
console.print()
console.print("[red]❌ Failed Projects:[/red]")
for project_name, result in sync_results:
if not result["success"]:
console.print(f"{project_name}: {result['message']}")
# Final status
console.print()
if dry_run:
console.print("[yellow]🔍 This was a dry run. To apply changes, run without --dry-run[/yellow]")
elif error_count == 0:
console.print("[green]🎉 All projects synced successfully![/green]")
else:
console.print(f"[yellow]⚠ Completed with {error_count} error(s)[/yellow]")
def _integrate_with_ai_gpt(project: str, components: List[str], verbose: bool) -> Optional[str]:
"""Integrate with ai.gpt for enhanced documentation generation."""
try:
from ..ai_provider import create_ai_provider
from ..persona import Persona
from ..config import Config
config = Config()
ai_root = config.data_dir.parent if config.data_dir else Path.cwd()
# Create AI provider
provider = config.get("default_provider", "ollama")
model = config.get(f"providers.{provider}.default_model", "qwen2.5")
ai_provider = create_ai_provider(provider=provider, model=model)
persona = Persona(config.data_dir)
# Create enhancement prompt
enhancement_prompt = f"""As an AI documentation expert, enhance the documentation for project '{project}'.
Project type: {project}
Components to include: {', '.join(components)}
Please provide:
1. Improved project description
2. Key features that should be highlighted
3. Usage examples
4. Integration points with other AI ecosystem projects
5. Development workflow recommendations
Focus on making the documentation more comprehensive and user-friendly."""
if verbose:
console.print("[dim]Generating AI-enhanced content...[/dim]")
# Get AI response
response, _ = persona.process_interaction(
"docs_system",
enhancement_prompt,
ai_provider
)
if verbose:
console.print("[green]✓ AI enhancement generated[/green]")
return response
except ImportError as e:
if verbose:
console.print(f"[yellow]AI integration unavailable: {e}[/yellow]")
return None
except Exception as e:
if verbose:
console.print(f"[red]AI integration error: {e}[/red]")
return None
# Add aliases for convenience
@docs_app.command("gen")
def generate_docs_alias(
project: str = typer.Option(..., "--project", "-p", help="Project name"),
output: Path = typer.Option(Path("./claude.md"), "--output", "-o", help="Output file path"),
include: str = typer.Option("core,specific", "--include", "-i", help="Components to include"),
ai_gpt_integration: bool = typer.Option(False, "--ai-gpt-integration", help="Enable ai.gpt integration"),
dry_run: bool = typer.Option(False, "--dry-run", help="Preview mode"),
verbose: bool = typer.Option(False, "--verbose", "-v", help="Verbose output"),
) -> None:
"""Alias for generate command."""
generate_docs(project, output, include, ai_gpt_integration, dry_run, verbose)
@docs_app.command("wiki")
def wiki_management(
action: str = typer.Option("update-auto", "--action", "-a", help="Action to perform (update-auto, build-home, status)"),
dir: Optional[Path] = typer.Option(None, "--dir", "-d", help="AI ecosystem root directory"),
auto_pull: bool = typer.Option(True, "--auto-pull/--no-auto-pull", help="Pull latest wiki changes before update"),
ai_enhance: bool = typer.Option(False, "--ai-enhance", help="Use AI to enhance wiki content"),
dry_run: bool = typer.Option(False, "--dry-run", help="Show what would be done without making changes"),
verbose: bool = typer.Option(False, "--verbose", "-v", help="Enable verbose output"),
) -> None:
"""Manage AI wiki generation and updates.
Automatically generates wiki pages from project claude.md files
and maintains the ai.wiki repository structure.
Actions:
- update-auto: Generate auto/ directory with project summaries
- build-home: Rebuild Home.md from all projects
- status: Show wiki repository status
Examples:
# Update auto-generated content (with auto-pull)
aigpt docs wiki --action=update-auto
# Update without pulling latest changes
aigpt docs wiki --action=update-auto --no-auto-pull
# Update with custom directory
aigpt docs wiki --action=update-auto --dir ~/ai/ai
# Preview what would be generated
aigpt docs wiki --action=update-auto --dry-run
# Check wiki status
aigpt docs wiki --action=status
"""
try:
# Load configuration
with ProgressManager("Loading configuration...") as progress:
config = load_docs_config(dir)
ai_root = get_ai_root(dir)
# Initialize wiki generator
wiki_generator = WikiGenerator(config, ai_root)
if not wiki_generator.wiki_root:
console.print("[red]❌ ai.wiki directory not found[/red]")
console.print(f"Expected location: {ai_root / 'ai.wiki'}")
console.print("Please ensure ai.wiki submodule is cloned")
raise typer.Abort()
# Show wiki information
if verbose:
console.print(f"[blue]📁 Wiki root: {wiki_generator.wiki_root}[/blue]")
console.print(f"[blue]📁 AI root: {ai_root}[/blue]")
if action == "status":
_show_wiki_status(wiki_generator, ai_root)
elif action == "update-auto":
if dry_run:
console.print("[yellow]🔍 DRY RUN MODE - No files will be modified[/yellow]")
if auto_pull:
console.print("[blue]📥 Would pull latest wiki changes[/blue]")
# Show what would be generated
project_dirs = find_project_directories(ai_root, config.list_projects())
console.print(f"[blue]📋 Would generate {len(project_dirs)} project pages:[/blue]")
for project_name in project_dirs.keys():
console.print(f" • auto/{project_name}.md")
console.print(" • Home.md")
else:
with ProgressManager("Updating wiki auto directory...") as progress:
success, updated_files = wiki_generator.update_wiki_auto_directory(
auto_pull=auto_pull,
ai_enhance=ai_enhance
)
if success:
console.print(f"[green]✅ Successfully updated {len(updated_files)} files[/green]")
if verbose:
for file in updated_files:
console.print(f"{file}")
else:
console.print("[red]❌ Failed to update wiki[/red]")
raise typer.Abort()
elif action == "build-home":
console.print("[blue]🏠 Building Home.md...[/blue]")
# This would be implemented to rebuild just Home.md
console.print("[yellow]⚠ build-home action not yet implemented[/yellow]")
else:
console.print(f"[red]Unknown action: {action}[/red]")
console.print("Available actions: update-auto, build-home, status")
raise typer.Abort()
except Exception as e:
if verbose:
console.print_exception()
else:
console.print(f"[red]Error: {e}[/red]")
raise typer.Abort()
def _show_wiki_status(wiki_generator: WikiGenerator, ai_root: Path) -> None:
"""Show wiki repository status."""
console.print("[blue]📊 AI Wiki Status[/blue]")
# Check wiki directory structure
wiki_root = wiki_generator.wiki_root
status_table = Table(title="Wiki Directory Status")
status_table.add_column("Directory", style="cyan")
status_table.add_column("Status", style="green")
status_table.add_column("Files", style="yellow")
directories = ["auto", "claude", "manual"]
for dir_name in directories:
dir_path = wiki_root / dir_name
if dir_path.exists():
file_count = len(list(dir_path.glob("*.md")))
status = "✓ Exists"
files = f"{file_count} files"
else:
status = "❌ Missing"
files = "N/A"
status_table.add_row(dir_name, status, files)
# Check Home.md
home_path = wiki_root / "Home.md"
home_status = "✓ Exists" if home_path.exists() else "❌ Missing"
status_table.add_row("Home.md", home_status, "1 file" if home_path.exists() else "N/A")
console.print(status_table)
# Show project coverage
config = wiki_generator.config
project_dirs = find_project_directories(ai_root, config.list_projects())
auto_dir = wiki_root / "auto"
if auto_dir.exists():
existing_wiki_files = set(f.stem for f in auto_dir.glob("*.md"))
available_projects = set(project_dirs.keys())
missing = available_projects - existing_wiki_files
orphaned = existing_wiki_files - available_projects
console.print(f"\n[blue]📋 Project Coverage:[/blue]")
console.print(f" • Total projects: {len(available_projects)}")
console.print(f" • Wiki pages: {len(existing_wiki_files)}")
if missing:
console.print(f" • Missing wiki pages: {', '.join(missing)}")
if orphaned:
console.print(f" • Orphaned wiki pages: {', '.join(orphaned)}")
if not missing and not orphaned:
console.print(f" • ✅ All projects have wiki pages")
@docs_app.command("config")
def docs_config(
action: str = typer.Option("show", "--action", "-a", help="Action (show, set-dir, clear-dir)"),
value: Optional[str] = typer.Option(None, "--value", "-v", help="Value to set"),
verbose: bool = typer.Option(False, "--verbose", help="Enable verbose output"),
) -> None:
"""Manage documentation configuration.
Configure default settings for aigpt docs commands to avoid
repeating options like --dir every time.
Actions:
- show: Display current configuration
- set-dir: Set default AI root directory
- clear-dir: Clear default AI root directory
Examples:
# Show current config
aigpt docs config --action=show
# Set default directory
aigpt docs config --action=set-dir --value=~/ai/ai
# Clear default directory
aigpt docs config --action=clear-dir
"""
try:
from ..config import Config
config = Config()
if action == "show":
console.print("[blue]📁 AI Documentation Configuration[/blue]")
# Show current ai_root resolution
current_ai_root = get_ai_root()
console.print(f"[green]Current AI root: {current_ai_root}[/green]")
# Show resolution method
import os
env_dir = os.getenv("AI_DOCS_DIR")
config_dir = config.get("docs.ai_root")
resolution_table = Table(title="Directory Resolution")
resolution_table.add_column("Method", style="cyan")
resolution_table.add_column("Value", style="yellow")
resolution_table.add_column("Status", style="green")
resolution_table.add_row("Environment (AI_DOCS_DIR)", env_dir or "Not set", "✓ Active" if env_dir else "Not used")
resolution_table.add_row("Config file (docs.ai_root)", config_dir or "Not set", "✓ Active" if config_dir and not env_dir else "Not used")
resolution_table.add_row("Default (relative)", str(Path(__file__).parent.parent.parent.parent.parent), "✓ Active" if not env_dir and not config_dir else "Not used")
console.print(resolution_table)
if verbose:
console.print(f"\n[dim]Config file: {config.config_file}[/dim]")
elif action == "set-dir":
if not value:
console.print("[red]Error: --value is required for set-dir action[/red]")
raise typer.Abort()
# Expand and validate path
ai_root_path = Path(value).expanduser().absolute()
if not ai_root_path.exists():
console.print(f"[yellow]Warning: Directory does not exist: {ai_root_path}[/yellow]")
if not typer.confirm("Set anyway?"):
raise typer.Abort()
# Check if ai.json exists
ai_json_path = ai_root_path / "ai.json"
if not ai_json_path.exists():
console.print(f"[yellow]Warning: ai.json not found at: {ai_json_path}[/yellow]")
if not typer.confirm("Set anyway?"):
raise typer.Abort()
# Save to config
config.set("docs.ai_root", str(ai_root_path))
console.print(f"[green]✅ Set default AI root directory: {ai_root_path}[/green]")
console.print("[dim]This will be used when --dir is not specified and AI_DOCS_DIR is not set[/dim]")
elif action == "clear-dir":
config.delete("docs.ai_root")
console.print("[green]✅ Cleared default AI root directory[/green]")
console.print("[dim]Will use default relative path when --dir and AI_DOCS_DIR are not set[/dim]")
else:
console.print(f"[red]Unknown action: {action}[/red]")
console.print("Available actions: show, set-dir, clear-dir")
raise typer.Abort()
except Exception as e:
if verbose:
console.print_exception()
else:
console.print(f"[red]Error: {e}[/red]")
raise typer.Abort()
# Export the docs app
__all__ = ["docs_app"]

View File

@ -1,305 +0,0 @@
"""Submodule management commands for ai.gpt."""
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import subprocess
import json
import typer
from rich.console import Console
from rich.panel import Panel
from rich.table import Table
from ..docs.config import get_ai_root, load_docs_config
from ..docs.git_utils import (
check_git_repository,
get_git_branch,
get_git_remote_url
)
from ..docs.utils import run_command
console = Console()
submodules_app = typer.Typer(help="Submodule management for AI ecosystem")
def get_submodules_from_gitmodules(repo_path: Path) -> Dict[str, str]:
"""Parse .gitmodules file to get submodule information."""
gitmodules_path = repo_path / ".gitmodules"
if not gitmodules_path.exists():
return {}
submodules = {}
current_name = None
with open(gitmodules_path, 'r') as f:
for line in f:
line = line.strip()
if line.startswith('[submodule "') and line.endswith('"]'):
current_name = line[12:-2] # Extract module name
elif line.startswith('path = ') and current_name:
path = line[7:] # Extract path
submodules[current_name] = path
current_name = None
return submodules
def get_branch_for_module(config, module_name: str) -> str:
"""Get target branch for a module from ai.json."""
project_info = config.get_project_info(module_name)
if project_info and project_info.branch:
return project_info.branch
return "main" # Default branch
@submodules_app.command("list")
def list_submodules(
dir: Optional[Path] = typer.Option(None, "--dir", "-d", help="AI ecosystem root directory"),
verbose: bool = typer.Option(False, "--verbose", "-v", help="Show detailed information")
):
"""List all submodules and their status."""
try:
config = load_docs_config(dir)
ai_root = get_ai_root(dir)
if not check_git_repository(ai_root):
console.print("[red]Error: Not a git repository[/red]")
raise typer.Abort()
submodules = get_submodules_from_gitmodules(ai_root)
if not submodules:
console.print("[yellow]No submodules found[/yellow]")
return
table = Table(title="Submodules Status")
table.add_column("Module", style="cyan")
table.add_column("Path", style="blue")
table.add_column("Branch", style="green")
table.add_column("Status", style="yellow")
for module_name, module_path in submodules.items():
full_path = ai_root / module_path
if not full_path.exists():
status = "❌ Missing"
branch = "N/A"
else:
branch = get_git_branch(full_path) or "detached"
# Check if submodule is up to date
returncode, stdout, stderr = run_command(
["git", "submodule", "status", module_path],
cwd=ai_root
)
if returncode == 0 and stdout:
status_char = stdout[0] if stdout else ' '
if status_char == ' ':
status = "✅ Clean"
elif status_char == '+':
status = "📝 Modified"
elif status_char == '-':
status = "❌ Not initialized"
elif status_char == 'U':
status = "⚠️ Conflicts"
else:
status = "❓ Unknown"
else:
status = "❓ Unknown"
target_branch = get_branch_for_module(config, module_name)
branch_display = f"{branch}"
if branch != target_branch:
branch_display += f" (target: {target_branch})"
table.add_row(module_name, module_path, branch_display, status)
console.print(table)
if verbose:
console.print(f"\n[dim]Total submodules: {len(submodules)}[/dim]")
console.print(f"[dim]Repository root: {ai_root}[/dim]")
except Exception as e:
console.print(f"[red]Error: {e}[/red]")
raise typer.Abort()
@submodules_app.command("update")
def update_submodules(
module: Optional[str] = typer.Option(None, "--module", "-m", help="Update specific submodule"),
all: bool = typer.Option(False, "--all", "-a", help="Update all submodules"),
dir: Optional[Path] = typer.Option(None, "--dir", "-d", help="AI ecosystem root directory"),
dry_run: bool = typer.Option(False, "--dry-run", help="Show what would be done"),
auto_commit: bool = typer.Option(False, "--auto-commit", help="Auto-commit changes"),
verbose: bool = typer.Option(False, "--verbose", "-v", help="Show detailed output")
):
"""Update submodules to latest commits."""
if not module and not all:
console.print("[red]Error: Either --module or --all is required[/red]")
raise typer.Abort()
if module and all:
console.print("[red]Error: Cannot use both --module and --all[/red]")
raise typer.Abort()
try:
config = load_docs_config(dir)
ai_root = get_ai_root(dir)
if not check_git_repository(ai_root):
console.print("[red]Error: Not a git repository[/red]")
raise typer.Abort()
submodules = get_submodules_from_gitmodules(ai_root)
if not submodules:
console.print("[yellow]No submodules found[/yellow]")
return
# Determine which modules to update
if all:
modules_to_update = list(submodules.keys())
else:
if module not in submodules:
console.print(f"[red]Error: Submodule '{module}' not found[/red]")
console.print(f"Available modules: {', '.join(submodules.keys())}")
raise typer.Abort()
modules_to_update = [module]
if dry_run:
console.print("[yellow]🔍 DRY RUN MODE - No changes will be made[/yellow]")
console.print(f"[cyan]Updating {len(modules_to_update)} submodule(s)...[/cyan]")
updated_modules = []
for module_name in modules_to_update:
module_path = submodules[module_name]
full_path = ai_root / module_path
target_branch = get_branch_for_module(config, module_name)
console.print(f"\n[blue]📦 Processing: {module_name}[/blue]")
if not full_path.exists():
console.print(f"[red]❌ Module directory not found: {module_path}[/red]")
continue
# Get current commit
current_commit = None
returncode, stdout, stderr = run_command(
["git", "rev-parse", "HEAD"],
cwd=full_path
)
if returncode == 0:
current_commit = stdout.strip()[:8]
if dry_run:
console.print(f"[yellow]🔍 Would update {module_name} to branch {target_branch}[/yellow]")
if current_commit:
console.print(f"[dim]Current: {current_commit}[/dim]")
continue
# Fetch latest changes
console.print(f"[dim]Fetching latest changes...[/dim]")
returncode, stdout, stderr = run_command(
["git", "fetch", "origin"],
cwd=full_path
)
if returncode != 0:
console.print(f"[red]❌ Failed to fetch: {stderr}[/red]")
continue
# Check if update is needed
returncode, stdout, stderr = run_command(
["git", "rev-parse", f"origin/{target_branch}"],
cwd=full_path
)
if returncode != 0:
console.print(f"[red]❌ Branch {target_branch} not found on remote[/red]")
continue
latest_commit = stdout.strip()[:8]
if current_commit == latest_commit:
console.print(f"[green]✅ Already up to date[/green]")
continue
# Switch to target branch and pull
console.print(f"[dim]Switching to branch {target_branch}...[/dim]")
returncode, stdout, stderr = run_command(
["git", "checkout", target_branch],
cwd=full_path
)
if returncode != 0:
console.print(f"[red]❌ Failed to checkout {target_branch}: {stderr}[/red]")
continue
returncode, stdout, stderr = run_command(
["git", "pull", "origin", target_branch],
cwd=full_path
)
if returncode != 0:
console.print(f"[red]❌ Failed to pull: {stderr}[/red]")
continue
# Get new commit
returncode, stdout, stderr = run_command(
["git", "rev-parse", "HEAD"],
cwd=full_path
)
new_commit = stdout.strip()[:8] if returncode == 0 else "unknown"
# Stage the submodule update
returncode, stdout, stderr = run_command(
["git", "add", module_path],
cwd=ai_root
)
console.print(f"[green]✅ Updated {module_name} ({current_commit}{new_commit})[/green]")
updated_modules.append((module_name, current_commit, new_commit))
# Summary
if updated_modules:
console.print(f"\n[green]🎉 Successfully updated {len(updated_modules)} module(s)[/green]")
if verbose:
for module_name, old_commit, new_commit in updated_modules:
console.print(f"{module_name}: {old_commit}{new_commit}")
if auto_commit and not dry_run:
console.print("[blue]💾 Auto-committing changes...[/blue]")
commit_message = f"Update submodules\n\n📦 Updated modules: {len(updated_modules)}\n"
for module_name, old_commit, new_commit in updated_modules:
commit_message += f"- {module_name}: {old_commit}{new_commit}\n"
commit_message += "\n🤖 Generated with ai.gpt submodules update"
returncode, stdout, stderr = run_command(
["git", "commit", "-m", commit_message],
cwd=ai_root
)
if returncode == 0:
console.print("[green]✅ Changes committed successfully[/green]")
else:
console.print(f"[red]❌ Failed to commit: {stderr}[/red]")
elif not dry_run:
console.print("[yellow]💾 Changes staged but not committed[/yellow]")
console.print("Run with --auto-commit to commit automatically")
elif not dry_run:
console.print("[yellow]No modules needed updating[/yellow]")
except Exception as e:
console.print(f"[red]Error: {e}[/red]")
if verbose:
console.print_exception()
raise typer.Abort()
# Export the submodules app
__all__ = ["submodules_app"]

View File

@ -1,440 +0,0 @@
"""Claude Code token usage and cost analysis commands."""
from pathlib import Path
from typing import Dict, List, Optional, Tuple
from datetime import datetime, timedelta
import json
import sqlite3
import typer
from rich.console import Console
from rich.panel import Panel
from rich.table import Table
from rich.progress import track
console = Console()
tokens_app = typer.Typer(help="Claude Code token usage and cost analysis")
# Claude Code pricing (estimated rates in USD)
CLAUDE_PRICING = {
"input_tokens_per_1k": 0.003, # $3 per 1M input tokens
"output_tokens_per_1k": 0.015, # $15 per 1M output tokens
"usd_to_jpy": 150 # Exchange rate
}
def find_claude_data_dir() -> Optional[Path]:
"""Find Claude Code data directory."""
possible_paths = [
Path.home() / ".claude",
Path.home() / ".config" / "claude",
Path.cwd() / ".claude"
]
for path in possible_paths:
if path.exists() and (path / "projects").exists():
return path
return None
def parse_jsonl_files(claude_dir: Path) -> List[Dict]:
"""Parse Claude Code JSONL files safely."""
records = []
projects_dir = claude_dir / "projects"
if not projects_dir.exists():
return records
# Find all .jsonl files recursively
jsonl_files = list(projects_dir.rglob("*.jsonl"))
for jsonl_file in track(jsonl_files, description="Reading Claude data..."):
try:
with open(jsonl_file, 'r', encoding='utf-8') as f:
for line_num, line in enumerate(f, 1):
line = line.strip()
if not line:
continue
try:
record = json.loads(line)
# Only include records with usage information
if (record.get('type') == 'assistant' and
'message' in record and
'usage' in record.get('message', {})):
records.append(record)
except json.JSONDecodeError:
# Skip malformed JSON lines
continue
except (IOError, PermissionError):
# Skip files we can't read
continue
return records
def calculate_costs(records: List[Dict]) -> Dict[str, float]:
"""Calculate token costs from usage records."""
total_input_tokens = 0
total_output_tokens = 0
total_cost_usd = 0
for record in records:
try:
usage = record.get('message', {}).get('usage', {})
input_tokens = int(usage.get('input_tokens', 0))
output_tokens = int(usage.get('output_tokens', 0))
# Calculate cost if not provided
cost_usd = record.get('costUSD')
if cost_usd is None:
input_cost = (input_tokens / 1000) * CLAUDE_PRICING["input_tokens_per_1k"]
output_cost = (output_tokens / 1000) * CLAUDE_PRICING["output_tokens_per_1k"]
cost_usd = input_cost + output_cost
else:
cost_usd = float(cost_usd)
total_input_tokens += input_tokens
total_output_tokens += output_tokens
total_cost_usd += cost_usd
except (ValueError, TypeError, KeyError):
# Skip records with invalid data
continue
return {
'input_tokens': total_input_tokens,
'output_tokens': total_output_tokens,
'total_tokens': total_input_tokens + total_output_tokens,
'cost_usd': total_cost_usd,
'cost_jpy': total_cost_usd * CLAUDE_PRICING["usd_to_jpy"]
}
def group_by_date(records: List[Dict]) -> Dict[str, Dict]:
"""Group records by date and calculate daily costs."""
daily_stats = {}
for record in records:
try:
timestamp = record.get('timestamp')
if not timestamp:
continue
# Parse timestamp and convert to JST
dt = datetime.fromisoformat(timestamp.replace('Z', '+00:00'))
# Convert to JST (UTC+9)
jst_dt = dt + timedelta(hours=9)
date_key = jst_dt.strftime('%Y-%m-%d')
if date_key not in daily_stats:
daily_stats[date_key] = []
daily_stats[date_key].append(record)
except (ValueError, TypeError):
continue
# Calculate costs for each day
daily_costs = {}
for date_key, day_records in daily_stats.items():
daily_costs[date_key] = calculate_costs(day_records)
return daily_costs
@tokens_app.command("summary")
def token_summary(
period: str = typer.Option("all", help="Period: today, week, month, all"),
claude_dir: Optional[Path] = typer.Option(None, "--claude-dir", help="Claude data directory"),
show_details: bool = typer.Option(False, "--details", help="Show detailed breakdown"),
format: str = typer.Option("table", help="Output format: table, json")
):
"""Show Claude Code token usage summary and estimated costs."""
# Find Claude data directory
if claude_dir is None:
claude_dir = find_claude_data_dir()
if claude_dir is None:
console.print("[red]❌ Claude Code data directory not found[/red]")
console.print("[dim]Looked in: ~/.claude, ~/.config/claude, ./.claude[/dim]")
raise typer.Abort()
if not claude_dir.exists():
console.print(f"[red]❌ Directory not found: {claude_dir}[/red]")
raise typer.Abort()
console.print(f"[cyan]📊 Analyzing Claude Code usage from: {claude_dir}[/cyan]")
# Parse data
records = parse_jsonl_files(claude_dir)
if not records:
console.print("[yellow]⚠️ No usage data found[/yellow]")
return
# Filter by period
now = datetime.now()
filtered_records = []
if period == "today":
today = now.strftime('%Y-%m-%d')
for record in records:
try:
timestamp = record.get('timestamp')
if timestamp:
dt = datetime.fromisoformat(timestamp.replace('Z', '+00:00'))
jst_dt = dt + timedelta(hours=9)
if jst_dt.strftime('%Y-%m-%d') == today:
filtered_records.append(record)
except (ValueError, TypeError):
continue
elif period == "week":
week_ago = now - timedelta(days=7)
for record in records:
try:
timestamp = record.get('timestamp')
if timestamp:
dt = datetime.fromisoformat(timestamp.replace('Z', '+00:00'))
jst_dt = dt + timedelta(hours=9)
if jst_dt.date() >= week_ago.date():
filtered_records.append(record)
except (ValueError, TypeError):
continue
elif period == "month":
month_ago = now - timedelta(days=30)
for record in records:
try:
timestamp = record.get('timestamp')
if timestamp:
dt = datetime.fromisoformat(timestamp.replace('Z', '+00:00'))
jst_dt = dt + timedelta(hours=9)
if jst_dt.date() >= month_ago.date():
filtered_records.append(record)
except (ValueError, TypeError):
continue
else: # all
filtered_records = records
# Calculate total costs
total_stats = calculate_costs(filtered_records)
if format == "json":
# JSON output
output = {
"period": period,
"total_records": len(filtered_records),
"input_tokens": total_stats['input_tokens'],
"output_tokens": total_stats['output_tokens'],
"total_tokens": total_stats['total_tokens'],
"estimated_cost_usd": round(total_stats['cost_usd'], 2),
"estimated_cost_jpy": round(total_stats['cost_jpy'], 0)
}
console.print(json.dumps(output, indent=2))
return
# Table output
console.print(Panel(
f"[bold cyan]Claude Code Token Usage Report[/bold cyan]\n\n"
f"Period: {period.title()}\n"
f"Data source: {claude_dir}",
title="📊 Usage Analysis",
border_style="cyan"
))
# Summary table
summary_table = Table(title="Token Summary")
summary_table.add_column("Metric", style="cyan")
summary_table.add_column("Value", style="green")
summary_table.add_row("Input Tokens", f"{total_stats['input_tokens']:,}")
summary_table.add_row("Output Tokens", f"{total_stats['output_tokens']:,}")
summary_table.add_row("Total Tokens", f"{total_stats['total_tokens']:,}")
summary_table.add_row("", "") # Separator
summary_table.add_row("Estimated Cost (USD)", f"${total_stats['cost_usd']:.2f}")
summary_table.add_row("Estimated Cost (JPY)", f"¥{total_stats['cost_jpy']:,.0f}")
summary_table.add_row("Records Analyzed", str(len(filtered_records)))
console.print(summary_table)
# Show daily breakdown if requested
if show_details:
daily_costs = group_by_date(filtered_records)
if daily_costs:
console.print("\n")
daily_table = Table(title="Daily Breakdown")
daily_table.add_column("Date", style="cyan")
daily_table.add_column("Input Tokens", style="blue")
daily_table.add_column("Output Tokens", style="green")
daily_table.add_column("Total Tokens", style="yellow")
daily_table.add_column("Cost (JPY)", style="red")
for date in sorted(daily_costs.keys(), reverse=True):
stats = daily_costs[date]
daily_table.add_row(
date,
f"{stats['input_tokens']:,}",
f"{stats['output_tokens']:,}",
f"{stats['total_tokens']:,}",
f"¥{stats['cost_jpy']:,.0f}"
)
console.print(daily_table)
# Warning about estimates
console.print("\n[dim]💡 Note: Costs are estimates based on Claude API pricing.[/dim]")
console.print("[dim] Actual Claude Code subscription costs may differ.[/dim]")
@tokens_app.command("daily")
def daily_breakdown(
days: int = typer.Option(7, help="Number of days to show"),
claude_dir: Optional[Path] = typer.Option(None, "--claude-dir", help="Claude data directory"),
):
"""Show daily token usage breakdown."""
# Find Claude data directory
if claude_dir is None:
claude_dir = find_claude_data_dir()
if claude_dir is None:
console.print("[red]❌ Claude Code data directory not found[/red]")
raise typer.Abort()
console.print(f"[cyan]📅 Daily token usage (last {days} days)[/cyan]")
# Parse data
records = parse_jsonl_files(claude_dir)
if not records:
console.print("[yellow]⚠️ No usage data found[/yellow]")
return
# Group by date
daily_costs = group_by_date(records)
# Get recent days
recent_dates = sorted(daily_costs.keys(), reverse=True)[:days]
if not recent_dates:
console.print("[yellow]No recent usage data found[/yellow]")
return
# Create table
table = Table(title=f"Daily Usage (Last {len(recent_dates)} days)")
table.add_column("Date", style="cyan")
table.add_column("Input", style="blue")
table.add_column("Output", style="green")
table.add_column("Total", style="yellow")
table.add_column("Cost (JPY)", style="red")
total_cost = 0
for date in recent_dates:
stats = daily_costs[date]
total_cost += stats['cost_jpy']
table.add_row(
date,
f"{stats['input_tokens']:,}",
f"{stats['output_tokens']:,}",
f"{stats['total_tokens']:,}",
f"¥{stats['cost_jpy']:,.0f}"
)
# Add total row
table.add_row(
"──────────",
"────────",
"────────",
"────────",
"──────────"
)
table.add_row(
"【Total】",
"",
"",
"",
f"¥{total_cost:,.0f}"
)
console.print(table)
console.print(f"\n[green]Total estimated cost for {len(recent_dates)} days: ¥{total_cost:,.0f}[/green]")
@tokens_app.command("status")
def token_status(
claude_dir: Optional[Path] = typer.Option(None, "--claude-dir", help="Claude data directory"),
):
"""Check Claude Code data availability and basic stats."""
# Find Claude data directory
if claude_dir is None:
claude_dir = find_claude_data_dir()
console.print("[cyan]🔍 Claude Code Data Status[/cyan]")
if claude_dir is None:
console.print("[red]❌ Claude Code data directory not found[/red]")
console.print("\n[yellow]Searched locations:[/yellow]")
console.print(" • ~/.claude")
console.print(" • ~/.config/claude")
console.print(" • ./.claude")
console.print("\n[dim]Make sure Claude Code is installed and has been used.[/dim]")
return
console.print(f"[green]✅ Found data directory: {claude_dir}[/green]")
projects_dir = claude_dir / "projects"
if not projects_dir.exists():
console.print("[yellow]⚠️ No projects directory found[/yellow]")
return
# Count files
jsonl_files = list(projects_dir.rglob("*.jsonl"))
console.print(f"[blue]📂 Found {len(jsonl_files)} JSONL files[/blue]")
if jsonl_files:
# Parse sample to check data quality
sample_records = []
for jsonl_file in jsonl_files[:3]: # Check first 3 files
try:
with open(jsonl_file, 'r') as f:
for line in f:
if line.strip():
try:
record = json.loads(line.strip())
sample_records.append(record)
if len(sample_records) >= 10:
break
except json.JSONDecodeError:
continue
if len(sample_records) >= 10:
break
except IOError:
continue
usage_records = [r for r in sample_records
if r.get('type') == 'assistant' and
'usage' in r.get('message', {})]
console.print(f"[green]📊 Found {len(usage_records)} usage records in sample[/green]")
if usage_records:
console.print("[blue]✅ Data appears valid for cost analysis[/blue]")
console.print("\n[dim]Run 'aigpt tokens summary' for full analysis[/dim]")
else:
console.print("[yellow]⚠️ No usage data found in sample[/yellow]")
else:
console.print("[yellow]⚠️ No JSONL files found[/yellow]")
# Export the tokens app
__all__ = ["tokens_app"]

View File

@ -1,184 +0,0 @@
"""Configuration management for ai.gpt"""
import json
import os
from pathlib import Path
from typing import Optional, Dict, Any
import logging
class Config:
"""Manages configuration settings"""
def __init__(self, config_dir: Optional[Path] = None):
if config_dir is None:
config_dir = Path.home() / ".config" / "syui" / "ai" / "gpt"
self.config_dir = config_dir
self.config_file = config_dir / "config.json"
self.data_dir = config_dir / "data"
# Create directories if they don't exist
self.config_dir.mkdir(parents=True, exist_ok=True)
self.data_dir.mkdir(parents=True, exist_ok=True)
self.logger = logging.getLogger(__name__)
self._config: Dict[str, Any] = {}
self._load_config()
def _load_config(self):
"""Load configuration from file"""
if self.config_file.exists():
try:
with open(self.config_file, 'r', encoding='utf-8') as f:
self._config = json.load(f)
except Exception as e:
self.logger.error(f"Failed to load config: {e}")
self._config = {}
else:
# Initialize with default config
self._config = {
"providers": {
"openai": {
"api_key": None,
"default_model": "gpt-4o-mini",
"system_prompt": None
},
"ollama": {
"host": "http://localhost:11434",
"default_model": "qwen3:latest",
"system_prompt": None
}
},
"mcp": {
"enabled": True,
"auto_detect": True,
"servers": {
"ai_gpt": {
"name": "ai.gpt MCP Server",
"base_url": "http://localhost:8001",
"endpoints": {
"get_memories": "/get_memories",
"search_memories": "/search_memories",
"get_contextual_memories": "/get_contextual_memories",
"process_interaction": "/process_interaction",
"get_relationship": "/get_relationship",
"get_all_relationships": "/get_all_relationships",
"get_persona_state": "/get_persona_state",
"get_fortune": "/get_fortune",
"run_maintenance": "/run_maintenance",
"execute_command": "/execute_command",
"analyze_file": "/analyze_file",
"remote_shell": "/remote_shell",
"ai_bot_status": "/ai_bot_status"
},
"timeout": 10.0
},
"ai_card": {
"name": "ai.card MCP Server",
"base_url": "http://localhost:8000",
"endpoints": {
"health": "/health",
"get_user_cards": "/api/cards/user",
"gacha": "/api/gacha",
"sync_atproto": "/api/sync"
},
"timeout": 5.0
}
}
},
"atproto": {
"handle": None,
"password": None,
"host": "https://bsky.social"
},
"default_provider": "ollama"
}
self._save_config()
def _save_config(self):
"""Save configuration to file"""
try:
with open(self.config_file, 'w', encoding='utf-8') as f:
json.dump(self._config, f, indent=2)
except Exception as e:
self.logger.error(f"Failed to save config: {e}")
def get(self, key: str, default: Any = None) -> Any:
"""Get configuration value using dot notation"""
keys = key.split('.')
value = self._config
for k in keys:
if isinstance(value, dict) and k in value:
value = value[k]
else:
return default
return value
def set(self, key: str, value: Any):
"""Set configuration value using dot notation"""
keys = key.split('.')
config = self._config
# Navigate to the parent dictionary
for k in keys[:-1]:
if k not in config:
config[k] = {}
config = config[k]
# Set the value
config[keys[-1]] = value
self._save_config()
def delete(self, key: str) -> bool:
"""Delete configuration value"""
keys = key.split('.')
config = self._config
# Navigate to the parent dictionary
for k in keys[:-1]:
if k not in config:
return False
config = config[k]
# Delete the key if it exists
if keys[-1] in config:
del config[keys[-1]]
self._save_config()
return True
return False
def list_keys(self, prefix: str = "") -> list[str]:
"""List all configuration keys with optional prefix"""
def _get_keys(config: dict, current_prefix: str = "") -> list[str]:
keys = []
for k, v in config.items():
full_key = f"{current_prefix}.{k}" if current_prefix else k
if isinstance(v, dict):
keys.extend(_get_keys(v, full_key))
else:
keys.append(full_key)
return keys
all_keys = _get_keys(self._config)
if prefix:
return [k for k in all_keys if k.startswith(prefix)]
return all_keys
def get_api_key(self, provider: str) -> Optional[str]:
"""Get API key for a specific provider"""
key = self.get(f"providers.{provider}.api_key")
# Also check environment variables
if not key and provider == "openai":
key = os.getenv("OPENAI_API_KEY")
return key
def get_provider_config(self, provider: str) -> Dict[str, Any]:
"""Get complete configuration for a provider"""
return self.get(f"providers.{provider}", {})

View File

@ -1 +0,0 @@
"""Documentation management module for ai.gpt."""

View File

@ -1,150 +0,0 @@
"""Configuration management for documentation system."""
import json
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
from pydantic import BaseModel, Field
class GitConfig(BaseModel):
"""Git configuration."""
host: str = "git.syui.ai"
protocol: str = "ssh"
class AtprotoConfig(BaseModel):
"""Atproto configuration."""
host: str = "syu.is"
protocol: str = "at"
at_url: str = "at://ai.syu.is"
did: str = "did:plc:6qyecktefllvenje24fcxnie"
web: str = "https://web.syu.is/@ai"
class ProjectMetadata(BaseModel):
"""Project metadata."""
last_updated: str
structure_version: str
domain: List[str]
git: GitConfig
atproto: AtprotoConfig
class ProjectInfo(BaseModel):
"""Individual project information."""
type: Union[str, List[str]] # Support both string and list
text: str
status: str
branch: str = "main"
git_url: Optional[str] = None
detailed_specs: Optional[str] = None
data_reference: Optional[str] = None
features: Optional[str] = None
class AIConfig(BaseModel):
"""AI projects configuration."""
ai: ProjectInfo
gpt: ProjectInfo
os: ProjectInfo
game: ProjectInfo
bot: ProjectInfo
moji: ProjectInfo
card: ProjectInfo
api: ProjectInfo
log: ProjectInfo
verse: ProjectInfo
shell: ProjectInfo
class DocsConfig(BaseModel):
"""Main documentation configuration model."""
version: int = 2
metadata: ProjectMetadata
ai: AIConfig
data: Dict[str, Any] = Field(default_factory=dict)
deprecated: Dict[str, Any] = Field(default_factory=dict)
@classmethod
def load_from_file(cls, config_path: Path) -> "DocsConfig":
"""Load configuration from ai.json file."""
if not config_path.exists():
raise FileNotFoundError(f"Configuration file not found: {config_path}")
with open(config_path, "r", encoding="utf-8") as f:
data = json.load(f)
return cls(**data)
def get_project_info(self, project_name: str) -> Optional[ProjectInfo]:
"""Get project information by name."""
return getattr(self.ai, project_name, None)
def get_project_git_url(self, project_name: str) -> str:
"""Get git URL for project."""
project = self.get_project_info(project_name)
if project and project.git_url:
return project.git_url
# Construct URL from metadata
host = self.metadata.git.host
protocol = self.metadata.git.protocol
if protocol == "ssh":
return f"git@{host}:ai/{project_name}"
else:
return f"https://{host}/ai/{project_name}"
def get_project_branch(self, project_name: str) -> str:
"""Get branch for project."""
project = self.get_project_info(project_name)
return project.branch if project else "main"
def list_projects(self) -> List[str]:
"""List all available projects."""
return list(self.ai.__fields__.keys())
def get_ai_root(custom_dir: Optional[Path] = None) -> Path:
"""Get AI ecosystem root directory.
Priority order:
1. --dir option (custom_dir parameter)
2. AI_DOCS_DIR environment variable
3. ai.gpt config file (docs.ai_root)
4. Default relative path
"""
if custom_dir:
return custom_dir
# Check environment variable
import os
env_dir = os.getenv("AI_DOCS_DIR")
if env_dir:
return Path(env_dir)
# Check ai.gpt config file
try:
from ..config import Config
config = Config()
config_ai_root = config.get("docs.ai_root")
if config_ai_root:
return Path(config_ai_root).expanduser()
except Exception:
# If config loading fails, continue to default
pass
# Default: From gpt/src/aigpt/docs/config.py, go up to ai/ root
return Path(__file__).parent.parent.parent.parent.parent
def get_claude_root(custom_dir: Optional[Path] = None) -> Path:
"""Get Claude documentation root directory."""
return get_ai_root(custom_dir) / "claude"
def load_docs_config(custom_dir: Optional[Path] = None) -> DocsConfig:
"""Load documentation configuration."""
config_path = get_ai_root(custom_dir) / "ai.json"
return DocsConfig.load_from_file(config_path)

View File

@ -1,397 +0,0 @@
"""Git utilities for documentation management."""
import subprocess
from pathlib import Path
from typing import List, Optional, Tuple
from rich.console import Console
from rich.progress import track
from .utils import run_command
console = Console()
def check_git_repository(path: Path) -> bool:
"""Check if path is a git repository."""
return (path / ".git").exists()
def get_submodules_status(repo_path: Path) -> List[dict]:
"""Get status of all submodules."""
if not check_git_repository(repo_path):
return []
returncode, stdout, stderr = run_command(
["git", "submodule", "status"],
cwd=repo_path
)
if returncode != 0:
return []
submodules = []
for line in stdout.strip().splitlines():
if line.strip():
# Parse git submodule status output
# Format: " commit_hash path (tag)" or "-commit_hash path" (not initialized)
parts = line.strip().split()
if len(parts) >= 2:
status_char = line[0] if line else ' '
commit = parts[0].lstrip('-+ ')
path = parts[1]
submodules.append({
"path": path,
"commit": commit,
"initialized": status_char != '-',
"modified": status_char == '+',
"status": status_char
})
return submodules
def init_and_update_submodules(repo_path: Path, specific_paths: Optional[List[str]] = None) -> Tuple[bool, str]:
"""Initialize and update submodules."""
if not check_git_repository(repo_path):
return False, "Not a git repository"
try:
# Initialize submodules
console.print("[blue]🔧 Initializing submodules...[/blue]")
returncode, stdout, stderr = run_command(
["git", "submodule", "init"],
cwd=repo_path
)
if returncode != 0:
return False, f"Failed to initialize submodules: {stderr}"
# Update submodules
console.print("[blue]📦 Updating submodules...[/blue]")
if specific_paths:
# Update specific submodules
for path in specific_paths:
console.print(f"[dim]Updating {path}...[/dim]")
returncode, stdout, stderr = run_command(
["git", "submodule", "update", "--init", "--recursive", path],
cwd=repo_path
)
if returncode != 0:
return False, f"Failed to update submodule {path}: {stderr}"
else:
# Update all submodules
returncode, stdout, stderr = run_command(
["git", "submodule", "update", "--init", "--recursive"],
cwd=repo_path
)
if returncode != 0:
return False, f"Failed to update submodules: {stderr}"
console.print("[green]✅ Submodules updated successfully[/green]")
return True, "Submodules updated successfully"
except Exception as e:
return False, f"Error updating submodules: {str(e)}"
def clone_missing_submodules(repo_path: Path, ai_config) -> Tuple[bool, List[str]]:
"""Clone missing submodules based on ai.json configuration."""
if not check_git_repository(repo_path):
return False, ["Not a git repository"]
try:
# Get current submodules
current_submodules = get_submodules_status(repo_path)
current_paths = {sub["path"] for sub in current_submodules}
# Get expected projects from ai.json
expected_projects = ai_config.list_projects()
# Find missing submodules
missing_submodules = []
for project in expected_projects:
if project not in current_paths:
# Check if directory exists but is not a submodule
project_path = repo_path / project
if not project_path.exists():
missing_submodules.append(project)
if not missing_submodules:
console.print("[green]✅ All submodules are present[/green]")
return True, []
console.print(f"[yellow]📋 Found {len(missing_submodules)} missing submodules: {missing_submodules}[/yellow]")
# Clone missing submodules
cloned = []
for project in track(missing_submodules, description="Cloning missing submodules..."):
git_url = ai_config.get_project_git_url(project)
branch = ai_config.get_project_branch(project)
console.print(f"[blue]📦 Adding submodule: {project}[/blue]")
console.print(f"[dim]URL: {git_url}[/dim]")
console.print(f"[dim]Branch: {branch}[/dim]")
returncode, stdout, stderr = run_command(
["git", "submodule", "add", "-b", branch, git_url, project],
cwd=repo_path
)
if returncode == 0:
cloned.append(project)
console.print(f"[green]✅ Added {project}[/green]")
else:
console.print(f"[red]❌ Failed to add {project}: {stderr}[/red]")
if cloned:
console.print(f"[green]🎉 Successfully cloned {len(cloned)} submodules[/green]")
return True, cloned
except Exception as e:
return False, [f"Error cloning submodules: {str(e)}"]
def ensure_submodules_available(repo_path: Path, ai_config, auto_clone: bool = True) -> Tuple[bool, List[str]]:
"""Ensure all submodules are available, optionally cloning missing ones."""
console.print("[blue]🔍 Checking submodule status...[/blue]")
# Get current submodule status
submodules = get_submodules_status(repo_path)
# Check for uninitialized submodules
uninitialized = [sub for sub in submodules if not sub["initialized"]]
if uninitialized:
console.print(f"[yellow]📦 Found {len(uninitialized)} uninitialized submodules[/yellow]")
if auto_clone:
success, message = init_and_update_submodules(
repo_path,
[sub["path"] for sub in uninitialized]
)
if not success:
return False, [message]
else:
return False, [f"Uninitialized submodules: {[sub['path'] for sub in uninitialized]}"]
# Check for missing submodules (not in .gitmodules but expected)
if auto_clone:
success, cloned = clone_missing_submodules(repo_path, ai_config)
if not success:
return False, cloned
# If we cloned new submodules, update all to be safe
if cloned:
success, message = init_and_update_submodules(repo_path)
if not success:
return False, [message]
return True, []
def get_git_branch(repo_path: Path) -> Optional[str]:
"""Get current git branch."""
if not check_git_repository(repo_path):
return None
returncode, stdout, stderr = run_command(
["git", "branch", "--show-current"],
cwd=repo_path
)
if returncode == 0:
return stdout.strip()
return None
def get_git_remote_url(repo_path: Path, remote: str = "origin") -> Optional[str]:
"""Get git remote URL."""
if not check_git_repository(repo_path):
return None
returncode, stdout, stderr = run_command(
["git", "remote", "get-url", remote],
cwd=repo_path
)
if returncode == 0:
return stdout.strip()
return None
def pull_repository(repo_path: Path, branch: Optional[str] = None) -> Tuple[bool, str]:
"""Pull latest changes from remote repository."""
if not check_git_repository(repo_path):
return False, "Not a git repository"
try:
# Get current branch if not specified
if branch is None:
branch = get_git_branch(repo_path)
if not branch:
# If in detached HEAD state, try to switch to main
console.print("[yellow]⚠️ Repository in detached HEAD state, switching to main...[/yellow]")
returncode, stdout, stderr = run_command(
["git", "checkout", "main"],
cwd=repo_path
)
if returncode == 0:
branch = "main"
console.print("[green]✅ Switched to main branch[/green]")
else:
return False, f"Could not switch to main branch: {stderr}"
console.print(f"[blue]📥 Pulling latest changes for branch: {branch}[/blue]")
# Check if we have uncommitted changes
returncode, stdout, stderr = run_command(
["git", "status", "--porcelain"],
cwd=repo_path
)
if returncode == 0 and stdout.strip():
console.print("[yellow]⚠️ Repository has uncommitted changes[/yellow]")
console.print("[dim]Consider committing changes before pull[/dim]")
# Continue anyway, git will handle conflicts
# Fetch latest changes
console.print("[dim]Fetching from remote...[/dim]")
returncode, stdout, stderr = run_command(
["git", "fetch", "origin"],
cwd=repo_path
)
if returncode != 0:
return False, f"Failed to fetch: {stderr}"
# Pull changes
returncode, stdout, stderr = run_command(
["git", "pull", "origin", branch],
cwd=repo_path
)
if returncode != 0:
# Check if it's a merge conflict
if "CONFLICT" in stderr or "conflict" in stderr.lower():
return False, f"Merge conflicts detected: {stderr}"
return False, f"Failed to pull: {stderr}"
# Check if there were any changes
if "Already up to date" in stdout or "Already up-to-date" in stdout:
console.print("[green]✅ Repository already up to date[/green]")
else:
console.print("[green]✅ Successfully pulled latest changes[/green]")
if stdout.strip():
console.print(f"[dim]{stdout.strip()}[/dim]")
return True, "Successfully pulled latest changes"
except Exception as e:
return False, f"Error pulling repository: {str(e)}"
def pull_wiki_repository(wiki_path: Path) -> Tuple[bool, str]:
"""Pull latest changes from wiki repository before generating content."""
if not wiki_path.exists():
return False, f"Wiki directory not found: {wiki_path}"
if not check_git_repository(wiki_path):
return False, f"Wiki directory is not a git repository: {wiki_path}"
console.print(f"[blue]📚 Updating wiki repository: {wiki_path.name}[/blue]")
return pull_repository(wiki_path)
def push_repository(repo_path: Path, branch: Optional[str] = None, commit_message: Optional[str] = None) -> Tuple[bool, str]:
"""Commit and push changes to remote repository."""
if not check_git_repository(repo_path):
return False, "Not a git repository"
try:
# Get current branch if not specified
if branch is None:
branch = get_git_branch(repo_path)
if not branch:
return False, "Could not determine current branch"
# Check if we have any changes to commit
returncode, stdout, stderr = run_command(
["git", "status", "--porcelain"],
cwd=repo_path
)
if returncode != 0:
return False, f"Failed to check git status: {stderr}"
if not stdout.strip():
console.print("[green]✅ No changes to commit[/green]")
return True, "No changes to commit"
console.print(f"[blue]📝 Committing changes in: {repo_path.name}[/blue]")
# Add all changes
returncode, stdout, stderr = run_command(
["git", "add", "."],
cwd=repo_path
)
if returncode != 0:
return False, f"Failed to add changes: {stderr}"
# Commit changes
if commit_message is None:
commit_message = f"Update wiki content - {Path().cwd().name} documentation sync"
returncode, stdout, stderr = run_command(
["git", "commit", "-m", commit_message],
cwd=repo_path
)
if returncode != 0:
# Check if there were no changes to commit
if "nothing to commit" in stderr or "nothing added to commit" in stderr:
console.print("[green]✅ No changes to commit[/green]")
return True, "No changes to commit"
return False, f"Failed to commit changes: {stderr}"
console.print(f"[blue]📤 Pushing to remote branch: {branch}[/blue]")
# Push to remote
returncode, stdout, stderr = run_command(
["git", "push", "origin", branch],
cwd=repo_path
)
if returncode != 0:
return False, f"Failed to push: {stderr}"
console.print("[green]✅ Successfully pushed changes to remote[/green]")
if stdout.strip():
console.print(f"[dim]{stdout.strip()}[/dim]")
return True, "Successfully committed and pushed changes"
except Exception as e:
return False, f"Error pushing repository: {str(e)}"
def push_wiki_repository(wiki_path: Path, commit_message: Optional[str] = None) -> Tuple[bool, str]:
"""Commit and push changes to wiki repository after generating content."""
if not wiki_path.exists():
return False, f"Wiki directory not found: {wiki_path}"
if not check_git_repository(wiki_path):
return False, f"Wiki directory is not a git repository: {wiki_path}"
console.print(f"[blue]📚 Pushing wiki repository: {wiki_path.name}[/blue]")
if commit_message is None:
commit_message = "Auto-update wiki content from ai.gpt docs"
return push_repository(wiki_path, branch="main", commit_message=commit_message)

View File

@ -1,158 +0,0 @@
"""Template management for documentation generation."""
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Optional
from jinja2 import Environment, FileSystemLoader
from .config import DocsConfig, get_claude_root
class DocumentationTemplateManager:
"""Manages Jinja2 templates for documentation generation."""
def __init__(self, config: DocsConfig):
self.config = config
self.claude_root = get_claude_root()
self.templates_dir = self.claude_root / "templates"
self.core_dir = self.claude_root / "core"
self.projects_dir = self.claude_root / "projects"
# Setup Jinja2 environment
self.env = Environment(
loader=FileSystemLoader([
str(self.templates_dir),
str(self.core_dir),
str(self.projects_dir),
]),
trim_blocks=True,
lstrip_blocks=True,
)
# Add custom filters
self.env.filters["timestamp"] = self._timestamp_filter
def _timestamp_filter(self, format_str: str = "%Y-%m-%d %H:%M:%S") -> str:
"""Jinja2 filter for timestamps."""
return datetime.now().strftime(format_str)
def get_template_context(self, project_name: str, components: List[str]) -> Dict:
"""Get template context for documentation generation."""
project_info = self.config.get_project_info(project_name)
return {
"config": self.config,
"project_name": project_name,
"project_info": project_info,
"components": components,
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"ai_md_content": self._get_ai_md_content(),
}
def _get_ai_md_content(self) -> Optional[str]:
"""Get content from ai.md file."""
ai_md_path = self.claude_root.parent / "ai.md"
if ai_md_path.exists():
return ai_md_path.read_text(encoding="utf-8")
return None
def render_component(self, component_name: str, context: Dict) -> str:
"""Render a specific component."""
component_files = {
"core": ["philosophy.md", "naming.md", "architecture.md"],
"philosophy": ["philosophy.md"],
"naming": ["naming.md"],
"architecture": ["architecture.md"],
"specific": [f"{context['project_name']}.md"],
}
if component_name not in component_files:
raise ValueError(f"Unknown component: {component_name}")
content_parts = []
for file_name in component_files[component_name]:
file_path = self.core_dir / file_name
if component_name == "specific":
file_path = self.projects_dir / file_name
if file_path.exists():
content = file_path.read_text(encoding="utf-8")
content_parts.append(content)
return "\n\n".join(content_parts)
def generate_documentation(
self,
project_name: str,
components: List[str],
output_path: Optional[Path] = None,
) -> str:
"""Generate complete documentation."""
context = self.get_template_context(project_name, components)
# Build content sections
content_sections = []
# Add ai.md header if available
if context["ai_md_content"]:
content_sections.append(context["ai_md_content"])
content_sections.append("---\n")
# Add title and metadata
content_sections.append("# エコシステム統合設計書(詳細版)\n")
content_sections.append("このドキュメントは動的生成されました。修正は元ファイルで行ってください。\n")
content_sections.append(f"生成日時: {context['timestamp']}")
content_sections.append(f"対象プロジェクト: {project_name}")
content_sections.append(f"含有コンポーネント: {','.join(components)}\n")
# Add component content
for component in components:
try:
component_content = self.render_component(component, context)
if component_content.strip():
content_sections.append(component_content)
except ValueError as e:
print(f"Warning: {e}")
# Add footer
footer = """
# footer
© syui
# important-instruction-reminders
Do what has been asked; nothing more, nothing less.
NEVER create files unless they're absolutely necessary for achieving your goal.
ALWAYS prefer editing an existing file to creating a new one.
NEVER proactively create documentation files (*.md) or README files. Only create documentation files if explicitly requested by the User.
"""
content_sections.append(footer)
# Join all sections
final_content = "\n".join(content_sections)
# Write to file if output path provided
if output_path:
output_path.parent.mkdir(parents=True, exist_ok=True)
output_path.write_text(final_content, encoding="utf-8")
return final_content
def list_available_components(self) -> List[str]:
"""List available components."""
return ["core", "philosophy", "naming", "architecture", "specific"]
def validate_components(self, components: List[str]) -> List[str]:
"""Validate and return valid components."""
available = self.list_available_components()
valid_components = []
for component in components:
if component in available:
valid_components.append(component)
else:
print(f"Warning: Unknown component '{component}' (available: {available})")
return valid_components or ["core", "specific"] # Default fallback

View File

@ -1,178 +0,0 @@
"""Utility functions for documentation management."""
import subprocess
import sys
from pathlib import Path
from typing import List, Optional, Tuple
from rich.console import Console
from rich.progress import Progress, SpinnerColumn, TextColumn
console = Console()
def run_command(
cmd: List[str],
cwd: Optional[Path] = None,
capture_output: bool = True,
verbose: bool = False,
) -> Tuple[int, str, str]:
"""Run a command and return exit code, stdout, stderr."""
if verbose:
console.print(f"[dim]Running: {' '.join(cmd)}[/dim]")
try:
result = subprocess.run(
cmd,
cwd=cwd,
capture_output=capture_output,
text=True,
check=False,
)
return result.returncode, result.stdout, result.stderr
except FileNotFoundError:
return 1, "", f"Command not found: {cmd[0]}"
def is_git_repository(path: Path) -> bool:
"""Check if path is a git repository."""
return (path / ".git").exists()
def get_git_status(repo_path: Path) -> Tuple[bool, List[str]]:
"""Get git status for repository."""
if not is_git_repository(repo_path):
return False, ["Not a git repository"]
returncode, stdout, stderr = run_command(
["git", "status", "--porcelain"],
cwd=repo_path
)
if returncode != 0:
return False, [stderr.strip()]
changes = [line.strip() for line in stdout.splitlines() if line.strip()]
return len(changes) == 0, changes
def validate_project_name(project_name: str, available_projects: List[str]) -> bool:
"""Validate project name against available projects."""
return project_name in available_projects
def format_file_size(size_bytes: int) -> str:
"""Format file size in human readable format."""
for unit in ['B', 'KB', 'MB', 'GB']:
if size_bytes < 1024.0:
return f"{size_bytes:.1f}{unit}"
size_bytes /= 1024.0
return f"{size_bytes:.1f}TB"
def count_lines(file_path: Path) -> int:
"""Count lines in a file."""
try:
with open(file_path, 'r', encoding='utf-8') as f:
return sum(1 for _ in f)
except (OSError, UnicodeDecodeError):
return 0
def find_project_directories(base_path: Path, projects: List[str]) -> dict:
"""Find project directories relative to base path."""
project_dirs = {}
# Look for directories matching project names
for project in projects:
project_path = base_path / project
if project_path.exists() and project_path.is_dir():
project_dirs[project] = project_path
return project_dirs
def check_command_available(command: str) -> bool:
"""Check if a command is available in PATH."""
try:
subprocess.run([command, "--version"],
capture_output=True,
check=True)
return True
except (subprocess.CalledProcessError, FileNotFoundError):
return False
def get_platform_info() -> dict:
"""Get platform information."""
import platform
return {
"system": platform.system(),
"release": platform.release(),
"machine": platform.machine(),
"python_version": platform.python_version(),
"python_implementation": platform.python_implementation(),
}
class ProgressManager:
"""Context manager for rich progress bars."""
def __init__(self, description: str = "Processing..."):
self.description = description
self.progress = None
self.task = None
def __enter__(self):
self.progress = Progress(
SpinnerColumn(),
TextColumn("[progress.description]{task.description}"),
console=console,
)
self.progress.start()
self.task = self.progress.add_task(self.description, total=None)
return self
def __exit__(self, exc_type, exc_val, exc_tb):
if self.progress:
self.progress.stop()
def update(self, description: str):
"""Update progress description."""
if self.progress and self.task is not None:
self.progress.update(self.task, description=description)
def safe_write_file(file_path: Path, content: str, backup: bool = True) -> bool:
"""Safely write content to file with optional backup."""
try:
# Create backup if file exists and backup requested
if backup and file_path.exists():
backup_path = file_path.with_suffix(file_path.suffix + ".bak")
backup_path.write_text(file_path.read_text(), encoding="utf-8")
# Ensure parent directory exists
file_path.parent.mkdir(parents=True, exist_ok=True)
# Write content
file_path.write_text(content, encoding="utf-8")
return True
except (OSError, UnicodeError) as e:
console.print(f"[red]Error writing file {file_path}: {e}[/red]")
return False
def confirm_action(message: str, default: bool = False) -> bool:
"""Ask user for confirmation."""
if not sys.stdin.isatty():
return default
suffix = " [Y/n]: " if default else " [y/N]: "
response = input(message + suffix).strip().lower()
if not response:
return default
return response in ('y', 'yes', 'true', '1')

View File

@ -1,314 +0,0 @@
"""Wiki generation utilities for ai.wiki management."""
import re
from pathlib import Path
from typing import Dict, List, Optional, Tuple
from rich.console import Console
from .config import DocsConfig, get_ai_root
from .utils import find_project_directories
from .git_utils import pull_wiki_repository, push_wiki_repository
console = Console()
class WikiGenerator:
"""Generates wiki content from project documentation."""
def __init__(self, config: DocsConfig, ai_root: Path):
self.config = config
self.ai_root = ai_root
self.wiki_root = ai_root / "ai.wiki" if (ai_root / "ai.wiki").exists() else None
def extract_project_summary(self, project_md_path: Path) -> Dict[str, str]:
"""Extract key information from claude/projects/${repo}.md file."""
if not project_md_path.exists():
return {"title": "No documentation", "summary": "Project documentation not found", "status": "Unknown"}
try:
content = project_md_path.read_text(encoding="utf-8")
# Extract title (first # heading)
title_match = re.search(r'^# (.+)$', content, re.MULTILINE)
title = title_match.group(1) if title_match else "Unknown Project"
# Extract project overview/summary (look for specific patterns)
summary = self._extract_summary_section(content)
# Extract status information
status = self._extract_status_info(content)
# Extract key features/goals
features = self._extract_features(content)
return {
"title": title,
"summary": summary,
"status": status,
"features": features,
"last_updated": self._get_last_updated_info(content)
}
except Exception as e:
console.print(f"[yellow]Warning: Failed to parse {project_md_path}: {e}[/yellow]")
return {"title": "Parse Error", "summary": str(e), "status": "Error"}
def _extract_summary_section(self, content: str) -> str:
"""Extract summary or overview section."""
# Look for common summary patterns
patterns = [
r'## 概要\s*\n(.*?)(?=\n##|\n#|\Z)',
r'## Overview\s*\n(.*?)(?=\n##|\n#|\Z)',
r'## プロジェクト概要\s*\n(.*?)(?=\n##|\n#|\Z)',
r'\*\*目的\*\*: (.+?)(?=\n|$)',
r'\*\*中核概念\*\*:\s*\n(.*?)(?=\n##|\n#|\Z)',
]
for pattern in patterns:
match = re.search(pattern, content, re.DOTALL | re.MULTILINE)
if match:
summary = match.group(1).strip()
# Clean up and truncate
summary = re.sub(r'\n+', ' ', summary)
summary = re.sub(r'\s+', ' ', summary)
return summary[:300] + "..." if len(summary) > 300 else summary
# Fallback: first paragraph after title
lines = content.split('\n')
summary_lines = []
found_content = False
for line in lines:
line = line.strip()
if not line:
if found_content and summary_lines:
break
continue
if line.startswith('#'):
found_content = True
continue
if found_content and not line.startswith('*') and not line.startswith('-'):
summary_lines.append(line)
if len(' '.join(summary_lines)) > 200:
break
return ' '.join(summary_lines)[:300] + "..." if summary_lines else "No summary available"
def _extract_status_info(self, content: str) -> str:
"""Extract status information."""
# Look for status patterns
patterns = [
r'\*\*状況\*\*: (.+?)(?=\n|$)',
r'\*\*Status\*\*: (.+?)(?=\n|$)',
r'\*\*現在の状況\*\*: (.+?)(?=\n|$)',
r'- \*\*状況\*\*: (.+?)(?=\n|$)',
]
for pattern in patterns:
match = re.search(pattern, content)
if match:
return match.group(1).strip()
return "No status information"
def _extract_features(self, content: str) -> List[str]:
"""Extract key features or bullet points."""
features = []
# Look for bullet point lists
lines = content.split('\n')
in_list = False
for line in lines:
line = line.strip()
if line.startswith('- ') or line.startswith('* '):
feature = line[2:].strip()
if len(feature) > 10 and not feature.startswith('**'): # Skip metadata
features.append(feature)
in_list = True
if len(features) >= 5: # Limit to 5 features
break
elif in_list and not line:
break
return features
def _get_last_updated_info(self, content: str) -> str:
"""Extract last updated information."""
patterns = [
r'生成日時: (.+?)(?=\n|$)',
r'最終更新: (.+?)(?=\n|$)',
r'Last updated: (.+?)(?=\n|$)',
]
for pattern in patterns:
match = re.search(pattern, content)
if match:
return match.group(1).strip()
return "Unknown"
def generate_project_wiki_page(self, project_name: str, project_info: Dict[str, str]) -> str:
"""Generate wiki page for a single project."""
config_info = self.config.get_project_info(project_name)
content = f"""# {project_name}
## 概要
{project_info['summary']}
## プロジェクト情報
- **タイプ**: {config_info.type if config_info else 'Unknown'}
- **説明**: {config_info.text if config_info else 'No description'}
- **ステータス**: {config_info.status if config_info else project_info.get('status', 'Unknown')}
- **ブランチ**: {config_info.branch if config_info else 'main'}
- **最終更新**: {project_info.get('last_updated', 'Unknown')}
## 主な機能・特徴
"""
features = project_info.get('features', [])
if features:
for feature in features:
content += f"- {feature}\n"
else:
content += "- 情報なし\n"
content += f"""
## リンク
- **Repository**: https://git.syui.ai/ai/{project_name}
- **Project Documentation**: [claude/projects/{project_name}.md](https://git.syui.ai/ai/ai/src/branch/main/claude/projects/{project_name}.md)
- **Generated Documentation**: [{project_name}/claude.md](https://git.syui.ai/ai/{project_name}/src/branch/main/claude.md)
---
*このページは claude/projects/{project_name}.md から自動生成されました*
"""
return content
def generate_wiki_home_page(self, project_summaries: Dict[str, Dict[str, str]]) -> str:
"""Generate the main Home.md page with all project summaries."""
content = """# AI Ecosystem Wiki
AI生態系プロジェクトの概要とドキュメント集約ページです。
## プロジェクト一覧
"""
# Group projects by type
project_groups = {}
for project_name, info in project_summaries.items():
config_info = self.config.get_project_info(project_name)
project_type = config_info.type if config_info else 'other'
if isinstance(project_type, list):
project_type = project_type[0] # Use first type
if project_type not in project_groups:
project_groups[project_type] = []
project_groups[project_type].append((project_name, info))
# Generate sections by type
type_names = {
'ai': '🧠 AI・知能システム',
'gpt': '🤖 自律・対話システム',
'os': '💻 システム・基盤',
'card': '🎮 ゲーム・エンターテイメント',
'shell': '⚡ ツール・ユーティリティ',
'other': '📦 その他'
}
for project_type, projects in project_groups.items():
type_display = type_names.get(project_type, f'📁 {project_type}')
content += f"### {type_display}\n\n"
for project_name, info in projects:
content += f"#### [{project_name}](auto/{project_name}.md)\n"
content += f"{info['summary'][:150]}{'...' if len(info['summary']) > 150 else ''}\n\n"
# Add quick status
config_info = self.config.get_project_info(project_name)
if config_info:
content += f"**Status**: {config_info.status} \n"
content += f"**Links**: [Repo](https://git.syui.ai/ai/{project_name}) | [Docs](https://git.syui.ai/ai/{project_name}/src/branch/main/claude.md)\n\n"
content += """
---
## ディレクトリ構成
- `auto/` - 自動生成されたプロジェクト概要
- `claude/` - Claude Code作業記録
- `manual/` - 手動作成ドキュメント
---
*このページは ai.json と claude/projects/ から自動生成されました*
*最終更新: {last_updated}*
""".format(last_updated=self._get_current_timestamp())
return content
def _get_current_timestamp(self) -> str:
"""Get current timestamp."""
from datetime import datetime
return datetime.now().strftime("%Y-%m-%d %H:%M:%S")
def update_wiki_auto_directory(self, auto_pull: bool = True) -> Tuple[bool, List[str]]:
"""Update the auto/ directory with project summaries."""
if not self.wiki_root:
return False, ["ai.wiki directory not found"]
# Pull latest changes from wiki repository first
if auto_pull:
success, message = pull_wiki_repository(self.wiki_root)
if not success:
console.print(f"[yellow]⚠️ Wiki pull failed: {message}[/yellow]")
console.print("[dim]Continuing with local wiki update...[/dim]")
else:
console.print(f"[green]✅ Wiki repository updated[/green]")
auto_dir = self.wiki_root / "auto"
auto_dir.mkdir(exist_ok=True)
# Get claude/projects directory
claude_projects_dir = self.ai_root / "claude" / "projects"
if not claude_projects_dir.exists():
return False, [f"claude/projects directory not found: {claude_projects_dir}"]
project_summaries = {}
updated_files = []
console.print("[blue]📋 Extracting project summaries from claude/projects/...[/blue]")
# Process all projects from ai.json
for project_name in self.config.list_projects():
project_md_path = claude_projects_dir / f"{project_name}.md"
# Extract summary from claude/projects/${project}.md
project_info = self.extract_project_summary(project_md_path)
project_summaries[project_name] = project_info
# Generate individual project wiki page
wiki_content = self.generate_project_wiki_page(project_name, project_info)
wiki_file_path = auto_dir / f"{project_name}.md"
try:
wiki_file_path.write_text(wiki_content, encoding="utf-8")
updated_files.append(f"auto/{project_name}.md")
console.print(f"[green]✓ Generated auto/{project_name}.md[/green]")
except Exception as e:
console.print(f"[red]✗ Failed to write auto/{project_name}.md: {e}[/red]")
# Generate Home.md
try:
home_content = self.generate_wiki_home_page(project_summaries)
home_path = self.wiki_root / "Home.md"
home_path.write_text(home_content, encoding="utf-8")
updated_files.append("Home.md")
console.print(f"[green]✓ Generated Home.md[/green]")
except Exception as e:
console.print(f"[red]✗ Failed to write Home.md: {e}[/red]")
return True, updated_files

View File

@ -1,118 +0,0 @@
"""AI Fortune system for daily personality variations"""
import json
import random
from datetime import date, datetime, timedelta
from pathlib import Path
from typing import Optional
import logging
from .models import AIFortune
class FortuneSystem:
"""Manages daily AI fortune affecting personality"""
def __init__(self, data_dir: Path):
self.data_dir = data_dir
self.fortune_file = data_dir / "fortunes.json"
self.fortunes: dict[str, AIFortune] = {}
self.logger = logging.getLogger(__name__)
self._load_fortunes()
def _load_fortunes(self):
"""Load fortune history from storage"""
if self.fortune_file.exists():
with open(self.fortune_file, 'r', encoding='utf-8') as f:
data = json.load(f)
for date_str, fortune_data in data.items():
# Convert date string back to date object
fortune_data['date'] = datetime.fromisoformat(fortune_data['date']).date()
self.fortunes[date_str] = AIFortune(**fortune_data)
def _save_fortunes(self):
"""Save fortune history to storage"""
data = {}
for date_str, fortune in self.fortunes.items():
fortune_dict = fortune.model_dump(mode='json')
fortune_dict['date'] = fortune.date.isoformat()
data[date_str] = fortune_dict
with open(self.fortune_file, 'w', encoding='utf-8') as f:
json.dump(data, f, indent=2)
def get_today_fortune(self) -> AIFortune:
"""Get or generate today's fortune"""
today = date.today()
today_str = today.isoformat()
if today_str in self.fortunes:
return self.fortunes[today_str]
# Generate new fortune
fortune_value = random.randint(1, 10)
# Check yesterday's fortune for consecutive tracking
yesterday = (today - timedelta(days=1))
yesterday_str = yesterday.isoformat()
consecutive_good = 0
consecutive_bad = 0
breakthrough_triggered = False
if yesterday_str in self.fortunes:
yesterday_fortune = self.fortunes[yesterday_str]
if fortune_value >= 7: # Good fortune
if yesterday_fortune.fortune_value >= 7:
consecutive_good = yesterday_fortune.consecutive_good + 1
else:
consecutive_good = 1
elif fortune_value <= 3: # Bad fortune
if yesterday_fortune.fortune_value <= 3:
consecutive_bad = yesterday_fortune.consecutive_bad + 1
else:
consecutive_bad = 1
# Check breakthrough conditions
if consecutive_good >= 3:
breakthrough_triggered = True
self.logger.info("Breakthrough! 3 consecutive good fortunes!")
fortune_value = 10 # Max fortune on breakthrough
elif consecutive_bad >= 3:
breakthrough_triggered = True
self.logger.info("Breakthrough! 3 consecutive bad fortunes!")
fortune_value = random.randint(7, 10) # Good fortune after bad streak
fortune = AIFortune(
date=today,
fortune_value=fortune_value,
consecutive_good=consecutive_good,
consecutive_bad=consecutive_bad,
breakthrough_triggered=breakthrough_triggered
)
self.fortunes[today_str] = fortune
self._save_fortunes()
self.logger.info(f"Today's fortune: {fortune_value}/10")
return fortune
def get_personality_modifier(self, fortune: AIFortune) -> dict[str, float]:
"""Get personality modifiers based on fortune"""
base_modifier = fortune.fortune_value / 10.0
modifiers = {
"optimism": base_modifier,
"energy": base_modifier * 0.8,
"patience": 1.0 - (abs(5.5 - fortune.fortune_value) * 0.1),
"creativity": 0.5 + (base_modifier * 0.5),
"empathy": 0.7 + (base_modifier * 0.3)
}
# Breakthrough effects
if fortune.breakthrough_triggered:
modifiers["confidence"] = 1.0
modifiers["spontaneity"] = 0.9
return modifiers

File diff suppressed because it is too large Load Diff

View File

@ -1,146 +0,0 @@
"""Simple MCP Server implementation for ai.gpt"""
from mcp import Server
from mcp.types import Tool, TextContent
from pathlib import Path
from typing import Any, Dict, List, Optional
import json
from .persona import Persona
from .ai_provider import create_ai_provider
import subprocess
import os
def create_mcp_server(data_dir: Path, enable_card: bool = False) -> Server:
"""Create MCP server with ai.gpt tools"""
server = Server("aigpt")
persona = Persona(data_dir)
@server.tool()
async def get_memories(limit: int = 10) -> List[Dict[str, Any]]:
"""Get active memories from the AI's memory system"""
memories = persona.memory.get_active_memories(limit=limit)
return [
{
"id": mem.id,
"content": mem.content,
"level": mem.level.value,
"importance": mem.importance_score,
"is_core": mem.is_core,
"timestamp": mem.timestamp.isoformat()
}
for mem in memories
]
@server.tool()
async def get_relationship(user_id: str) -> Dict[str, Any]:
"""Get relationship status with a specific user"""
rel = persona.relationships.get_or_create_relationship(user_id)
return {
"user_id": rel.user_id,
"status": rel.status.value,
"score": rel.score,
"transmission_enabled": rel.transmission_enabled,
"is_broken": rel.is_broken,
"total_interactions": rel.total_interactions,
"last_interaction": rel.last_interaction.isoformat() if rel.last_interaction else None
}
@server.tool()
async def process_interaction(user_id: str, message: str, provider: str = "ollama", model: str = "qwen2.5") -> Dict[str, Any]:
"""Process an interaction with a user"""
ai_provider = create_ai_provider(provider, model)
response, relationship_delta = persona.process_interaction(user_id, message, ai_provider)
rel = persona.relationships.get_or_create_relationship(user_id)
return {
"response": response,
"relationship_delta": relationship_delta,
"new_relationship_score": rel.score,
"transmission_enabled": rel.transmission_enabled,
"relationship_status": rel.status.value
}
@server.tool()
async def get_fortune() -> Dict[str, Any]:
"""Get today's AI fortune"""
fortune = persona.fortune_system.get_today_fortune()
modifiers = persona.fortune_system.get_personality_modifier(fortune)
return {
"value": fortune.fortune_value,
"date": fortune.date.isoformat(),
"consecutive_good": fortune.consecutive_good,
"consecutive_bad": fortune.consecutive_bad,
"breakthrough": fortune.breakthrough_triggered,
"personality_modifiers": modifiers
}
@server.tool()
async def execute_command(command: str, working_dir: str = ".") -> Dict[str, Any]:
"""Execute a shell command"""
try:
import shlex
result = subprocess.run(
shlex.split(command),
cwd=working_dir,
capture_output=True,
text=True,
timeout=60
)
return {
"status": "success" if result.returncode == 0 else "error",
"returncode": result.returncode,
"stdout": result.stdout,
"stderr": result.stderr,
"command": command
}
except subprocess.TimeoutExpired:
return {"error": "Command timed out"}
except Exception as e:
return {"error": str(e)}
@server.tool()
async def analyze_file(file_path: str) -> Dict[str, Any]:
"""Analyze a file using AI"""
try:
if not os.path.exists(file_path):
return {"error": f"File not found: {file_path}"}
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
ai_provider = create_ai_provider("ollama", "qwen2.5")
prompt = f"Analyze this file and provide insights:\\n\\nFile: {file_path}\\n\\nContent:\\n{content[:2000]}"
analysis = ai_provider.generate_response(prompt, "You are a code analyst.")
return {
"analysis": analysis,
"file_path": file_path,
"file_size": len(content),
"line_count": len(content.split('\\n'))
}
except Exception as e:
return {"error": str(e)}
return server
async def main():
"""Run MCP server"""
import sys
from mcp import stdio_server
data_dir = Path.home() / ".config" / "syui" / "ai" / "gpt" / "data"
data_dir.mkdir(parents=True, exist_ok=True)
server = create_mcp_server(data_dir)
await stdio_server(server)
if __name__ == "__main__":
import asyncio
asyncio.run(main())

View File

@ -1,408 +0,0 @@
"""Memory management system for ai.gpt"""
import json
import hashlib
from datetime import datetime, timedelta
from pathlib import Path
from typing import List, Optional, Dict, Any
import logging
from .models import Memory, MemoryLevel, Conversation
class MemoryManager:
"""Manages AI's memory with hierarchical storage and forgetting"""
def __init__(self, data_dir: Path):
self.data_dir = data_dir
self.memories_file = data_dir / "memories.json"
self.conversations_file = data_dir / "conversations.json"
self.memories: Dict[str, Memory] = {}
self.conversations: List[Conversation] = []
self.logger = logging.getLogger(__name__)
self._load_memories()
def _load_memories(self):
"""Load memories from persistent storage"""
if self.memories_file.exists():
with open(self.memories_file, 'r', encoding='utf-8') as f:
data = json.load(f)
for mem_data in data:
memory = Memory(**mem_data)
self.memories[memory.id] = memory
if self.conversations_file.exists():
with open(self.conversations_file, 'r', encoding='utf-8') as f:
data = json.load(f)
self.conversations = [Conversation(**conv) for conv in data]
def _save_memories(self):
"""Save memories to persistent storage"""
memories_data = [mem.model_dump(mode='json') for mem in self.memories.values()]
with open(self.memories_file, 'w', encoding='utf-8') as f:
json.dump(memories_data, f, indent=2, default=str)
conv_data = [conv.model_dump(mode='json') for conv in self.conversations]
with open(self.conversations_file, 'w', encoding='utf-8') as f:
json.dump(conv_data, f, indent=2, default=str)
def add_conversation(self, conversation: Conversation) -> Memory:
"""Add a conversation and create memory from it"""
self.conversations.append(conversation)
# Create memory from conversation
memory_id = hashlib.sha256(
f"{conversation.id}{conversation.timestamp}".encode()
).hexdigest()[:16]
memory = Memory(
id=memory_id,
timestamp=conversation.timestamp,
content=f"User: {conversation.user_message}\nAI: {conversation.ai_response}",
level=MemoryLevel.FULL_LOG,
importance_score=abs(conversation.relationship_delta) * 0.1
)
self.memories[memory.id] = memory
self._save_memories()
return memory
def add_memory(self, memory: Memory):
"""Add a memory directly to the system"""
self.memories[memory.id] = memory
self._save_memories()
def create_smart_summary(self, user_id: str, ai_provider=None) -> Optional[Memory]:
"""Create AI-powered thematic summary from recent memories"""
recent_memories = [
mem for mem in self.memories.values()
if mem.level == MemoryLevel.FULL_LOG
and (datetime.now() - mem.timestamp).days < 7
]
if len(recent_memories) < 5:
return None
# Sort by timestamp for chronological analysis
recent_memories.sort(key=lambda m: m.timestamp)
# Prepare conversation context for AI analysis
conversations_text = "\n\n".join([
f"[{mem.timestamp.strftime('%Y-%m-%d %H:%M')}] {mem.content}"
for mem in recent_memories
])
summary_prompt = f"""
Analyze these recent conversations and create a thematic summary focusing on:
1. Communication patterns and user preferences
2. Technical topics and problem-solving approaches
3. Relationship progression and trust level
4. Key recurring themes and interests
Conversations:
{conversations_text}
Create a concise summary (2-3 sentences) that captures the essence of this interaction period:
"""
try:
if ai_provider:
summary_content = ai_provider.chat(summary_prompt, max_tokens=200)
else:
# Fallback to pattern-based analysis
themes = self._extract_themes(recent_memories)
summary_content = f"Themes: {', '.join(themes[:3])}. {len(recent_memories)} interactions with focus on technical discussions."
except Exception as e:
self.logger.warning(f"AI summary failed, using fallback: {e}")
themes = self._extract_themes(recent_memories)
summary_content = f"Themes: {', '.join(themes[:3])}. {len(recent_memories)} interactions."
summary_id = hashlib.sha256(
f"summary_{datetime.now().isoformat()}".encode()
).hexdigest()[:16]
summary = Memory(
id=summary_id,
timestamp=datetime.now(),
content=f"SUMMARY ({len(recent_memories)} conversations): {summary_content}",
summary=summary_content,
level=MemoryLevel.SUMMARY,
importance_score=0.6,
metadata={
"memory_count": len(recent_memories),
"time_span": f"{recent_memories[0].timestamp.date()} to {recent_memories[-1].timestamp.date()}",
"themes": self._extract_themes(recent_memories)[:5]
}
)
self.memories[summary.id] = summary
# Reduce importance of summarized memories
for mem in recent_memories:
mem.importance_score *= 0.8
self._save_memories()
return summary
def _extract_themes(self, memories: List[Memory]) -> List[str]:
"""Extract common themes from memory content"""
common_words = {}
for memory in memories:
# Simple keyword extraction
words = memory.content.lower().split()
for word in words:
if len(word) > 4 and word.isalpha():
common_words[word] = common_words.get(word, 0) + 1
# Return most frequent meaningful words
return sorted(common_words.keys(), key=common_words.get, reverse=True)[:10]
def create_core_memory(self, ai_provider=None) -> Optional[Memory]:
"""Analyze all memories to extract core personality-forming elements"""
# Collect all non-forgotten memories for analysis
all_memories = [
mem for mem in self.memories.values()
if mem.level != MemoryLevel.FORGOTTEN
]
if len(all_memories) < 10:
return None
# Sort by importance and timestamp for comprehensive analysis
all_memories.sort(key=lambda m: (m.importance_score, m.timestamp), reverse=True)
# Prepare memory context for AI analysis
memory_context = "\n".join([
f"[{mem.level.value}] {mem.timestamp.strftime('%Y-%m-%d')}: {mem.content[:200]}..."
for mem in all_memories[:20] # Top 20 memories
])
core_prompt = f"""
Analyze these conversations and memories to identify core personality elements that define this user relationship:
1. Communication style and preferences
2. Core values and principles
3. Problem-solving patterns
4. Trust level and relationship depth
5. Unique characteristics that make this relationship special
Memories:
{memory_context}
Extract the essential personality-forming elements (2-3 sentences) that should NEVER be forgotten:
"""
try:
if ai_provider:
core_content = ai_provider.chat(core_prompt, max_tokens=150)
else:
# Fallback to pattern analysis
user_patterns = self._analyze_user_patterns(all_memories)
core_content = f"User shows {user_patterns['communication_style']} communication, focuses on {user_patterns['main_interests']}, and demonstrates {user_patterns['problem_solving']} approach."
except Exception as e:
self.logger.warning(f"AI core analysis failed, using fallback: {e}")
user_patterns = self._analyze_user_patterns(all_memories)
core_content = f"Core pattern: {user_patterns['communication_style']} style, {user_patterns['main_interests']} interests."
# Create core memory
core_id = hashlib.sha256(
f"core_{datetime.now().isoformat()}".encode()
).hexdigest()[:16]
core_memory = Memory(
id=core_id,
timestamp=datetime.now(),
content=f"CORE PERSONALITY: {core_content}",
summary=core_content,
level=MemoryLevel.CORE,
importance_score=1.0,
is_core=True,
metadata={
"source_memories": len(all_memories),
"analysis_date": datetime.now().isoformat(),
"patterns": self._analyze_user_patterns(all_memories)
}
)
self.memories[core_memory.id] = core_memory
self._save_memories()
self.logger.info(f"Core memory created: {core_id}")
return core_memory
def _analyze_user_patterns(self, memories: List[Memory]) -> Dict[str, str]:
"""Analyze patterns in user behavior from memories"""
# Extract patterns from conversation content
all_content = " ".join([mem.content.lower() for mem in memories])
# Simple pattern detection
communication_indicators = {
"technical": ["code", "implementation", "system", "api", "database"],
"casual": ["thanks", "please", "sorry", "help"],
"formal": ["could", "would", "should", "proper"]
}
problem_solving_indicators = {
"systematic": ["first", "then", "next", "step", "plan"],
"experimental": ["try", "test", "experiment", "see"],
"theoretical": ["concept", "design", "architecture", "pattern"]
}
# Score each pattern
communication_style = max(
communication_indicators.keys(),
key=lambda style: sum(all_content.count(word) for word in communication_indicators[style])
)
problem_solving = max(
problem_solving_indicators.keys(),
key=lambda style: sum(all_content.count(word) for word in problem_solving_indicators[style])
)
# Extract main interests from themes
themes = self._extract_themes(memories)
main_interests = ", ".join(themes[:3]) if themes else "general technology"
return {
"communication_style": communication_style,
"problem_solving": problem_solving,
"main_interests": main_interests,
"interaction_count": len(memories)
}
def identify_core_memories(self) -> List[Memory]:
"""Identify existing memories that should become core (legacy method)"""
core_candidates = [
mem for mem in self.memories.values()
if mem.importance_score > 0.8
and not mem.is_core
and mem.level != MemoryLevel.FORGOTTEN
]
for memory in core_candidates:
memory.is_core = True
memory.level = MemoryLevel.CORE
self.logger.info(f"Memory {memory.id} promoted to core")
self._save_memories()
return core_candidates
def apply_forgetting(self):
"""Apply selective forgetting based on importance and time"""
now = datetime.now()
for memory in self.memories.values():
if memory.is_core or memory.level == MemoryLevel.FORGOTTEN:
continue
# Time-based decay
age_days = (now - memory.timestamp).days
decay_factor = memory.decay_rate * age_days
memory.importance_score -= decay_factor
# Forget unimportant old memories
if memory.importance_score <= 0.1 and age_days > 30:
memory.level = MemoryLevel.FORGOTTEN
self.logger.info(f"Memory {memory.id} forgotten")
self._save_memories()
def get_active_memories(self, limit: int = 10) -> List[Memory]:
"""Get currently active memories for persona (legacy method)"""
active = [
mem for mem in self.memories.values()
if mem.level != MemoryLevel.FORGOTTEN
]
# Sort by importance and recency
active.sort(
key=lambda m: (m.is_core, m.importance_score, m.timestamp),
reverse=True
)
return active[:limit]
def get_contextual_memories(self, query: str = "", limit: int = 10) -> Dict[str, List[Memory]]:
"""Get memories organized by priority with contextual relevance"""
all_memories = [
mem for mem in self.memories.values()
if mem.level != MemoryLevel.FORGOTTEN
]
# Categorize memories by type and importance
core_memories = [mem for mem in all_memories if mem.level == MemoryLevel.CORE]
summary_memories = [mem for mem in all_memories if mem.level == MemoryLevel.SUMMARY]
recent_memories = [
mem for mem in all_memories
if mem.level == MemoryLevel.FULL_LOG
and (datetime.now() - mem.timestamp).days < 3
]
# Apply keyword relevance if query provided
if query:
query_lower = query.lower()
def relevance_score(memory: Memory) -> float:
content_score = 1 if query_lower in memory.content.lower() else 0
summary_score = 1 if memory.summary and query_lower in memory.summary.lower() else 0
metadata_score = 1 if any(
query_lower in str(v).lower()
for v in (memory.metadata or {}).values()
) else 0
return content_score + summary_score + metadata_score
# Re-rank by relevance while maintaining type priority
core_memories.sort(key=lambda m: (relevance_score(m), m.importance_score), reverse=True)
summary_memories.sort(key=lambda m: (relevance_score(m), m.importance_score), reverse=True)
recent_memories.sort(key=lambda m: (relevance_score(m), m.importance_score), reverse=True)
else:
# Sort by importance and recency
core_memories.sort(key=lambda m: (m.importance_score, m.timestamp), reverse=True)
summary_memories.sort(key=lambda m: (m.importance_score, m.timestamp), reverse=True)
recent_memories.sort(key=lambda m: (m.importance_score, m.timestamp), reverse=True)
# Return organized memory structure
return {
"core": core_memories[:3], # Always include top core memories
"summary": summary_memories[:3], # Recent summaries
"recent": recent_memories[:limit-6], # Fill remaining with recent
"all_active": all_memories[:limit] # Fallback for simple access
}
def search_memories(self, keywords: List[str], memory_types: List[MemoryLevel] = None) -> List[Memory]:
"""Search memories by keywords and optionally filter by memory types"""
if memory_types is None:
memory_types = [MemoryLevel.CORE, MemoryLevel.SUMMARY, MemoryLevel.FULL_LOG]
matching_memories = []
for memory in self.memories.values():
if memory.level not in memory_types or memory.level == MemoryLevel.FORGOTTEN:
continue
# Check if any keyword matches in content, summary, or metadata
content_text = f"{memory.content} {memory.summary or ''}"
if memory.metadata:
content_text += " " + " ".join(str(v) for v in memory.metadata.values())
content_lower = content_text.lower()
# Score by keyword matches
match_score = sum(
keyword.lower() in content_lower
for keyword in keywords
)
if match_score > 0:
# Add match score to memory for sorting
memory_copy = memory.model_copy()
memory_copy.importance_score += match_score * 0.1
matching_memories.append(memory_copy)
# Sort by relevance (match score + importance + core status)
matching_memories.sort(
key=lambda m: (m.is_core, m.importance_score, m.timestamp),
reverse=True
)
return matching_memories

View File

@ -1,88 +0,0 @@
"""Data models for ai.gpt system"""
from datetime import datetime, date
from typing import Optional, Dict, List, Any
from enum import Enum
from pydantic import BaseModel, Field, field_validator
class MemoryLevel(str, Enum):
"""Memory importance levels"""
FULL_LOG = "full_log"
SUMMARY = "summary"
CORE = "core"
FORGOTTEN = "forgotten"
class RelationshipStatus(str, Enum):
"""Relationship status levels"""
STRANGER = "stranger"
ACQUAINTANCE = "acquaintance"
FRIEND = "friend"
CLOSE_FRIEND = "close_friend"
BROKEN = "broken" # 不可逆
class Memory(BaseModel):
"""Single memory unit"""
id: str
timestamp: datetime
content: str
summary: Optional[str] = None
level: MemoryLevel = MemoryLevel.FULL_LOG
importance_score: float
is_core: bool = False
decay_rate: float = 0.01
metadata: Optional[Dict[str, Any]] = None
@field_validator('importance_score')
@classmethod
def validate_importance_score(cls, v):
"""Ensure importance_score is within valid range, handle floating point precision issues"""
if abs(v) < 1e-10: # Very close to zero
return 0.0
return max(0.0, min(1.0, v))
class Relationship(BaseModel):
"""Relationship with a specific user"""
user_id: str # atproto DID
status: RelationshipStatus = RelationshipStatus.STRANGER
score: float = 0.0
daily_interactions: int = 0
total_interactions: int = 0
last_interaction: Optional[datetime] = None
transmission_enabled: bool = False
threshold: float = 100.0
decay_rate: float = 0.1
daily_limit: int = 10
is_broken: bool = False
class AIFortune(BaseModel):
"""Daily AI fortune affecting personality"""
date: date
fortune_value: int = Field(ge=1, le=10)
consecutive_good: int = 0
consecutive_bad: int = 0
breakthrough_triggered: bool = False
class PersonaState(BaseModel):
"""Current persona state"""
base_personality: Dict[str, float]
current_mood: str
fortune: AIFortune
active_memories: List[str] # Memory IDs
relationship_modifiers: Dict[str, float]
class Conversation(BaseModel):
"""Conversation log entry"""
id: str
user_id: str
timestamp: datetime
user_message: str
ai_response: str
relationship_delta: float = 0.0
memory_created: bool = False

View File

@ -1,263 +0,0 @@
"""Persona management system integrating memory, relationships, and fortune"""
import json
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Optional
import logging
from .models import PersonaState, Conversation
from .memory import MemoryManager
from .relationship import RelationshipTracker
from .fortune import FortuneSystem
class Persona:
"""AI persona with unique characteristics based on interactions"""
def __init__(self, data_dir: Path, name: str = "ai"):
self.data_dir = data_dir
self.name = name
self.memory = MemoryManager(data_dir)
self.relationships = RelationshipTracker(data_dir)
self.fortune_system = FortuneSystem(data_dir)
self.logger = logging.getLogger(__name__)
# Base personality traits
self.base_personality = {
"curiosity": 0.7,
"empathy": 0.8,
"creativity": 0.6,
"patience": 0.7,
"optimism": 0.6
}
self.state_file = data_dir / "persona_state.json"
self._load_state()
def _load_state(self):
"""Load persona state from storage"""
if self.state_file.exists():
with open(self.state_file, 'r', encoding='utf-8') as f:
data = json.load(f)
self.base_personality = data.get("base_personality", self.base_personality)
def _save_state(self):
"""Save persona state to storage"""
state_data = {
"base_personality": self.base_personality,
"last_updated": datetime.now().isoformat()
}
with open(self.state_file, 'w', encoding='utf-8') as f:
json.dump(state_data, f, indent=2)
def get_current_state(self) -> PersonaState:
"""Get current persona state including all modifiers"""
# Get today's fortune
fortune = self.fortune_system.get_today_fortune()
fortune_modifiers = self.fortune_system.get_personality_modifier(fortune)
# Apply fortune modifiers to base personality
current_personality = {}
for trait, base_value in self.base_personality.items():
modifier = fortune_modifiers.get(trait, 1.0)
current_personality[trait] = min(1.0, base_value * modifier)
# Get active memories for context
active_memories = self.memory.get_active_memories(limit=5)
# Determine mood based on fortune and recent interactions
mood = self._determine_mood(fortune.fortune_value)
state = PersonaState(
base_personality=current_personality,
current_mood=mood,
fortune=fortune,
active_memories=[mem.id for mem in active_memories],
relationship_modifiers={}
)
return state
def _determine_mood(self, fortune_value: int) -> str:
"""Determine current mood based on fortune and other factors"""
if fortune_value >= 8:
return "joyful"
elif fortune_value >= 6:
return "cheerful"
elif fortune_value >= 4:
return "neutral"
elif fortune_value >= 2:
return "melancholic"
else:
return "contemplative"
def build_context_prompt(self, user_id: str, current_message: str) -> str:
"""Build context-aware prompt with relevant memories"""
# Get contextual memories based on current message
memory_groups = self.memory.get_contextual_memories(query=current_message, limit=8)
# Build context sections
context_parts = []
# Core personality elements (always included)
if memory_groups["core"]:
core_context = "\n".join([mem.content for mem in memory_groups["core"]])
context_parts.append(f"CORE PERSONALITY:\n{core_context}")
# Recent summaries for context
if memory_groups["summary"]:
summary_context = "\n".join([mem.summary or mem.content for mem in memory_groups["summary"]])
context_parts.append(f"RECENT PATTERNS:\n{summary_context}")
# Recent specific interactions
if memory_groups["recent"]:
recent_context = "\n".join([
f"[{mem.timestamp.strftime('%m-%d')}] {mem.content[:100]}..."
for mem in memory_groups["recent"][:3]
])
context_parts.append(f"RECENT INTERACTIONS:\n{recent_context}")
# Get current persona state
state = self.get_current_state()
# Build final prompt
context_prompt = f"""You are an AI with persistent memory and evolving relationships. Your current state:
PERSONALITY: {', '.join([f'{k}={v:.1f}' for k, v in state.base_personality.items()])}
MOOD: {state.current_mood}
FORTUNE: {state.fortune.fortune_value}/10
"""
if context_parts:
context_prompt += "RELEVANT CONTEXT:\n" + "\n\n".join(context_parts) + "\n\n"
context_prompt += f"""IMPORTANT: You have access to the following tools:
- Memory tools: get_memories, search_memories, get_contextual_memories
- Relationship tools: get_relationship
- Card game tools: card_get_user_cards, card_draw_card, card_analyze_collection
When asked about cards, collections, or anything card-related, YOU MUST use the card tools.
For "カードコレクションを見せて" or similar requests, use card_get_user_cards with did='{user_id}'.
Respond to this message while staying true to your personality and the established relationship context:
User: {current_message}
AI:"""
return context_prompt
def process_interaction(self, user_id: str, message: str, ai_provider=None) -> tuple[str, float]:
"""Process user interaction and generate response with enhanced context"""
# Get current state
state = self.get_current_state()
# Get relationship with user
relationship = self.relationships.get_or_create_relationship(user_id)
# Enhanced response generation with context awareness
if relationship.is_broken:
response = "..."
relationship_delta = 0.0
else:
if ai_provider:
# Build context-aware prompt
context_prompt = self.build_context_prompt(user_id, message)
# Generate response using AI with full context
try:
# Check if AI provider supports MCP
if hasattr(ai_provider, 'chat_with_mcp'):
import asyncio
response = asyncio.run(ai_provider.chat_with_mcp(context_prompt, max_tokens=2000, user_id=user_id))
else:
response = ai_provider.chat(context_prompt, max_tokens=2000)
# Clean up response if it includes the prompt echo
if "AI:" in response:
response = response.split("AI:")[-1].strip()
except Exception as e:
self.logger.error(f"AI response generation failed: {e}")
response = f"I appreciate your message about {message[:50]}..."
# Calculate relationship delta based on interaction quality and context
if state.current_mood in ["joyful", "cheerful"]:
relationship_delta = 2.0
elif relationship.status.value == "close_friend":
relationship_delta = 1.5
else:
relationship_delta = 1.0
else:
# Context-aware fallback responses
memory_groups = self.memory.get_contextual_memories(query=message, limit=3)
if memory_groups["core"]:
# Reference core memories for continuity
response = f"Based on our relationship, I think {message.lower()} connects to what we've discussed before."
relationship_delta = 1.5
elif state.current_mood == "joyful":
response = f"What a wonderful day! {message} sounds interesting!"
relationship_delta = 2.0
elif relationship.status.value == "close_friend":
response = f"I've been thinking about our conversations. {message}"
relationship_delta = 1.5
else:
response = f"I understand. {message}"
relationship_delta = 1.0
# Create conversation record
conv_id = f"{user_id}_{datetime.now().timestamp()}"
conversation = Conversation(
id=conv_id,
user_id=user_id,
timestamp=datetime.now(),
user_message=message,
ai_response=response,
relationship_delta=relationship_delta,
memory_created=True
)
# Update memory
self.memory.add_conversation(conversation)
# Update relationship
self.relationships.update_interaction(user_id, relationship_delta)
return response, relationship_delta
def can_transmit_to(self, user_id: str) -> bool:
"""Check if AI can transmit messages to this user"""
relationship = self.relationships.get_or_create_relationship(user_id)
return relationship.transmission_enabled and not relationship.is_broken
def daily_maintenance(self):
"""Perform daily maintenance tasks"""
self.logger.info("Performing daily maintenance...")
# Apply time decay to relationships
self.relationships.apply_time_decay()
# Apply forgetting to memories
self.memory.apply_forgetting()
# Identify core memories
core_memories = self.memory.identify_core_memories()
if core_memories:
self.logger.info(f"Identified {len(core_memories)} new core memories")
# Create memory summaries
for user_id in self.relationships.relationships:
try:
from .ai_provider import create_ai_provider
ai_provider = create_ai_provider()
summary = self.memory.create_smart_summary(user_id, ai_provider=ai_provider)
if summary:
self.logger.info(f"Created smart summary for interactions with {user_id}")
except Exception as e:
self.logger.warning(f"Could not create AI summary for {user_id}: {e}")
self._save_state()
self.logger.info("Daily maintenance completed")

View File

@ -1,321 +0,0 @@
"""Project management and continuous development logic for ai.shell"""
import json
import os
from pathlib import Path
from typing import Dict, List, Optional, Any
from datetime import datetime
import subprocess
import hashlib
from .models import Memory
from .ai_provider import AIProvider
class ProjectState:
"""プロジェクトの現在状態を追跡"""
def __init__(self, project_root: Path):
self.project_root = project_root
self.files_state: Dict[str, str] = {} # ファイルパス: ハッシュ
self.last_analysis: Optional[datetime] = None
self.project_context: Optional[str] = None
self.development_goals: List[str] = []
self.known_patterns: Dict[str, Any] = {}
def scan_project_files(self) -> Dict[str, str]:
"""プロジェクトファイルをスキャンしてハッシュ計算"""
current_state = {}
# 対象ファイル拡張子
target_extensions = {'.py', '.js', '.ts', '.rs', '.go', '.java', '.cpp', '.c', '.h'}
for file_path in self.project_root.rglob('*'):
if (file_path.is_file() and
file_path.suffix in target_extensions and
not any(part.startswith('.') for part in file_path.parts)):
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
file_hash = hashlib.md5(content.encode()).hexdigest()
relative_path = str(file_path.relative_to(self.project_root))
current_state[relative_path] = file_hash
except Exception:
continue
return current_state
def detect_changes(self) -> Dict[str, str]:
"""ファイル変更を検出"""
current_state = self.scan_project_files()
changes = {}
# 新規・変更ファイル
for path, current_hash in current_state.items():
if path not in self.files_state or self.files_state[path] != current_hash:
changes[path] = "modified" if path in self.files_state else "added"
# 削除ファイル
for path in self.files_state:
if path not in current_state:
changes[path] = "deleted"
self.files_state = current_state
return changes
class ContinuousDeveloper:
"""Claude Code的な継続開発機能"""
def __init__(self, project_root: Path, ai_provider: Optional[AIProvider] = None):
self.project_root = project_root
self.ai_provider = ai_provider
self.project_state = ProjectState(project_root)
self.session_memory: List[str] = []
def load_project_context(self) -> str:
"""プロジェクト文脈を読み込み"""
context_files = [
"claude.md", "aishell.md", "README.md",
"pyproject.toml", "package.json", "Cargo.toml"
]
context_parts = []
for filename in context_files:
file_path = self.project_root / filename
if file_path.exists():
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
context_parts.append(f"## {filename}\n{content}")
except Exception:
continue
return "\n\n".join(context_parts)
def analyze_project_structure(self) -> Dict[str, Any]:
"""プロジェクト構造を分析"""
analysis = {
"language": self._detect_primary_language(),
"framework": self._detect_framework(),
"structure": self._analyze_file_structure(),
"dependencies": self._analyze_dependencies(),
"patterns": self._detect_code_patterns()
}
return analysis
def _detect_primary_language(self) -> str:
"""主要言語を検出"""
file_counts = {}
for file_path in self.project_root.rglob('*'):
if file_path.is_file() and file_path.suffix:
ext = file_path.suffix.lower()
file_counts[ext] = file_counts.get(ext, 0) + 1
language_map = {
'.py': 'Python',
'.js': 'JavaScript',
'.ts': 'TypeScript',
'.rs': 'Rust',
'.go': 'Go',
'.java': 'Java'
}
if file_counts:
primary_ext = max(file_counts.items(), key=lambda x: x[1])[0]
return language_map.get(primary_ext, 'Unknown')
return 'Unknown'
def _detect_framework(self) -> str:
"""フレームワークを検出"""
frameworks = {
'fastapi': ['fastapi', 'uvicorn'],
'django': ['django'],
'flask': ['flask'],
'react': ['react'],
'next.js': ['next'],
'rust-actix': ['actix-web'],
}
# pyproject.toml, package.json, Cargo.tomlから依存関係を確認
for config_file in ['pyproject.toml', 'package.json', 'Cargo.toml']:
config_path = self.project_root / config_file
if config_path.exists():
try:
with open(config_path, 'r') as f:
content = f.read().lower()
for framework, keywords in frameworks.items():
if any(keyword in content for keyword in keywords):
return framework
except Exception:
continue
return 'Unknown'
def _analyze_file_structure(self) -> Dict[str, List[str]]:
"""ファイル構造を分析"""
structure = {"directories": [], "key_files": []}
for item in self.project_root.iterdir():
if item.is_dir() and not item.name.startswith('.'):
structure["directories"].append(item.name)
elif item.is_file() and item.name in [
'main.py', 'app.py', 'index.js', 'main.rs', 'main.go'
]:
structure["key_files"].append(item.name)
return structure
def _analyze_dependencies(self) -> List[str]:
"""依存関係を分析"""
deps = []
# Python dependencies
pyproject = self.project_root / "pyproject.toml"
if pyproject.exists():
try:
with open(pyproject, 'r') as f:
content = f.read()
# Simple regex would be better but for now just check for common packages
common_packages = ['fastapi', 'pydantic', 'uvicorn', 'ollama', 'openai']
for package in common_packages:
if package in content:
deps.append(package)
except Exception:
pass
return deps
def _detect_code_patterns(self) -> Dict[str, int]:
"""コードパターンを検出"""
patterns = {
"classes": 0,
"functions": 0,
"api_endpoints": 0,
"async_functions": 0
}
for py_file in self.project_root.rglob('*.py'):
try:
with open(py_file, 'r', encoding='utf-8') as f:
content = f.read()
patterns["classes"] += content.count('class ')
patterns["functions"] += content.count('def ')
patterns["api_endpoints"] += content.count('@app.')
patterns["async_functions"] += content.count('async def')
except Exception:
continue
return patterns
def suggest_next_steps(self, current_task: Optional[str] = None) -> List[str]:
"""次のステップを提案"""
if not self.ai_provider:
return ["AI provider not available for suggestions"]
context = self.load_project_context()
analysis = self.analyze_project_structure()
changes = self.project_state.detect_changes()
prompt = f"""
プロジェクト分析に基づいて、次の開発ステップを3-5個提案してください。
## プロジェクト文脈
{context[:1000]}
## 構造分析
言語: {analysis['language']}
フレームワーク: {analysis['framework']}
パターン: {analysis['patterns']}
## 最近の変更
{changes}
## 現在のタスク
{current_task or "特になし"}
具体的で実行可能なステップを提案してください:
"""
try:
response = self.ai_provider.chat(prompt, max_tokens=300)
# Simple parsing - in real implementation would be more sophisticated
steps = [line.strip() for line in response.split('\n')
if line.strip() and (line.strip().startswith('-') or line.strip().startswith('1.'))]
return steps[:5]
except Exception as e:
return [f"Error generating suggestions: {str(e)}"]
def generate_code(self, description: str, file_path: Optional[str] = None) -> str:
"""コード生成"""
if not self.ai_provider:
return "AI provider not available for code generation"
context = self.load_project_context()
analysis = self.analyze_project_structure()
prompt = f"""
以下の仕様に基づいてコードを生成してください。
## プロジェクト文脈
{context[:800]}
## 言語・フレームワーク
言語: {analysis['language']}
フレームワーク: {analysis['framework']}
既存パターン: {analysis['patterns']}
## 生成要求
{description}
{"ファイルパス: " + file_path if file_path else ""}
プロジェクトの既存コードスタイルと一貫性を保ったコードを生成してください:
"""
try:
return self.ai_provider.chat(prompt, max_tokens=500)
except Exception as e:
return f"Error generating code: {str(e)}"
def analyze_file(self, file_path: str) -> str:
"""ファイル分析"""
full_path = self.project_root / file_path
if not full_path.exists():
return f"File not found: {file_path}"
try:
with open(full_path, 'r', encoding='utf-8') as f:
content = f.read()
except Exception as e:
return f"Error reading file: {str(e)}"
if not self.ai_provider:
return f"File contents ({len(content)} chars):\n{content[:200]}..."
context = self.load_project_context()
prompt = f"""
以下のファイルを分析して、改善点や問題点を指摘してください。
## プロジェクト文脈
{context[:500]}
## ファイル: {file_path}
{content[:1500]}
分析内容:
1. コード品質
2. プロジェクトとの整合性
3. 改善提案
4. 潜在的な問題
"""
try:
return self.ai_provider.chat(prompt, max_tokens=400)
except Exception as e:
return f"Error analyzing file: {str(e)}"

View File

@ -1,135 +0,0 @@
"""Relationship tracking system with irreversible damage"""
import json
from datetime import datetime, timedelta
from pathlib import Path
from typing import Dict, Optional
import logging
from .models import Relationship, RelationshipStatus
class RelationshipTracker:
"""Tracks and manages relationships with users"""
def __init__(self, data_dir: Path):
self.data_dir = data_dir
self.relationships_file = data_dir / "relationships.json"
self.relationships: Dict[str, Relationship] = {}
self.logger = logging.getLogger(__name__)
self._load_relationships()
def _load_relationships(self):
"""Load relationships from persistent storage"""
if self.relationships_file.exists():
with open(self.relationships_file, 'r', encoding='utf-8') as f:
data = json.load(f)
for user_id, rel_data in data.items():
self.relationships[user_id] = Relationship(**rel_data)
def _save_relationships(self):
"""Save relationships to persistent storage"""
data = {
user_id: rel.model_dump(mode='json')
for user_id, rel in self.relationships.items()
}
with open(self.relationships_file, 'w', encoding='utf-8') as f:
json.dump(data, f, indent=2, default=str)
def get_or_create_relationship(self, user_id: str) -> Relationship:
"""Get existing relationship or create new one"""
if user_id not in self.relationships:
self.relationships[user_id] = Relationship(user_id=user_id)
self._save_relationships()
return self.relationships[user_id]
def update_interaction(self, user_id: str, delta: float) -> Relationship:
"""Update relationship based on interaction"""
rel = self.get_or_create_relationship(user_id)
# Check if relationship is broken (irreversible)
if rel.is_broken:
self.logger.warning(f"Relationship with {user_id} is broken. No updates allowed.")
return rel
# Check daily limit
if rel.last_interaction and rel.last_interaction.date() == datetime.now().date():
if rel.daily_interactions >= rel.daily_limit:
self.logger.info(f"Daily interaction limit reached for {user_id}")
return rel
else:
rel.daily_interactions = 0
# Update interaction counts
rel.daily_interactions += 1
rel.total_interactions += 1
rel.last_interaction = datetime.now()
# Update score with bounds
old_score = rel.score
rel.score += delta
rel.score = max(0.0, min(200.0, rel.score)) # 0-200 range
# Check for relationship damage
if delta < -10.0: # Significant negative interaction
self.logger.warning(f"Major relationship damage with {user_id}: {delta}")
if rel.score <= 0:
rel.is_broken = True
rel.status = RelationshipStatus.BROKEN
rel.transmission_enabled = False
self.logger.error(f"Relationship with {user_id} is now BROKEN (irreversible)")
# Update relationship status based on score
if not rel.is_broken:
if rel.score >= 150:
rel.status = RelationshipStatus.CLOSE_FRIEND
elif rel.score >= 100:
rel.status = RelationshipStatus.FRIEND
elif rel.score >= 50:
rel.status = RelationshipStatus.ACQUAINTANCE
else:
rel.status = RelationshipStatus.STRANGER
# Check transmission threshold
if rel.score >= rel.threshold and not rel.transmission_enabled:
rel.transmission_enabled = True
self.logger.info(f"Transmission enabled for {user_id}!")
self._save_relationships()
return rel
def apply_time_decay(self):
"""Apply time-based decay to all relationships"""
now = datetime.now()
for user_id, rel in self.relationships.items():
if rel.is_broken or not rel.last_interaction:
continue
# Calculate days since last interaction
days_inactive = (now - rel.last_interaction).days
if days_inactive > 0:
# Apply decay
decay_amount = rel.decay_rate * days_inactive
old_score = rel.score
rel.score = max(0.0, rel.score - decay_amount)
# Update status if score dropped
if rel.score < rel.threshold:
rel.transmission_enabled = False
if decay_amount > 0:
self.logger.info(
f"Applied decay to {user_id}: {old_score:.2f} -> {rel.score:.2f}"
)
self._save_relationships()
def get_transmission_eligible(self) -> Dict[str, Relationship]:
"""Get all relationships eligible for transmission"""
return {
user_id: rel
for user_id, rel in self.relationships.items()
if rel.transmission_enabled and not rel.is_broken
}

View File

@ -1,312 +0,0 @@
"""Scheduler for autonomous AI tasks"""
import json
import asyncio
from datetime import datetime, timedelta
from pathlib import Path
from typing import Dict, List, Optional, Any, Callable
from enum import Enum
import logging
from apscheduler.schedulers.asyncio import AsyncIOScheduler
from apscheduler.triggers.cron import CronTrigger
from apscheduler.triggers.interval import IntervalTrigger
from croniter import croniter
from .persona import Persona
from .transmission import TransmissionController
from .ai_provider import create_ai_provider
class TaskType(str, Enum):
"""Types of scheduled tasks"""
TRANSMISSION_CHECK = "transmission_check"
MAINTENANCE = "maintenance"
FORTUNE_UPDATE = "fortune_update"
RELATIONSHIP_DECAY = "relationship_decay"
MEMORY_SUMMARY = "memory_summary"
CUSTOM = "custom"
class ScheduledTask:
"""Represents a scheduled task"""
def __init__(
self,
task_id: str,
task_type: TaskType,
schedule: str, # Cron expression or interval
enabled: bool = True,
last_run: Optional[datetime] = None,
next_run: Optional[datetime] = None,
metadata: Optional[Dict[str, Any]] = None
):
self.task_id = task_id
self.task_type = task_type
self.schedule = schedule
self.enabled = enabled
self.last_run = last_run
self.next_run = next_run
self.metadata = metadata or {}
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for storage"""
return {
"task_id": self.task_id,
"task_type": self.task_type.value,
"schedule": self.schedule,
"enabled": self.enabled,
"last_run": self.last_run.isoformat() if self.last_run else None,
"next_run": self.next_run.isoformat() if self.next_run else None,
"metadata": self.metadata
}
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "ScheduledTask":
"""Create from dictionary"""
return cls(
task_id=data["task_id"],
task_type=TaskType(data["task_type"]),
schedule=data["schedule"],
enabled=data.get("enabled", True),
last_run=datetime.fromisoformat(data["last_run"]) if data.get("last_run") else None,
next_run=datetime.fromisoformat(data["next_run"]) if data.get("next_run") else None,
metadata=data.get("metadata", {})
)
class AIScheduler:
"""Manages scheduled tasks for the AI system"""
def __init__(self, data_dir: Path, persona: Persona):
self.data_dir = data_dir
self.persona = persona
self.tasks_file = data_dir / "scheduled_tasks.json"
self.tasks: Dict[str, ScheduledTask] = {}
self.scheduler = AsyncIOScheduler()
self.logger = logging.getLogger(__name__)
self._load_tasks()
# Task handlers
self.task_handlers: Dict[TaskType, Callable] = {
TaskType.TRANSMISSION_CHECK: self._handle_transmission_check,
TaskType.MAINTENANCE: self._handle_maintenance,
TaskType.FORTUNE_UPDATE: self._handle_fortune_update,
TaskType.RELATIONSHIP_DECAY: self._handle_relationship_decay,
TaskType.MEMORY_SUMMARY: self._handle_memory_summary,
}
def _load_tasks(self):
"""Load scheduled tasks from storage"""
if self.tasks_file.exists():
with open(self.tasks_file, 'r', encoding='utf-8') as f:
data = json.load(f)
for task_data in data:
task = ScheduledTask.from_dict(task_data)
self.tasks[task.task_id] = task
def _save_tasks(self):
"""Save scheduled tasks to storage"""
tasks_data = [task.to_dict() for task in self.tasks.values()]
with open(self.tasks_file, 'w', encoding='utf-8') as f:
json.dump(tasks_data, f, indent=2, default=str)
def add_task(
self,
task_type: TaskType,
schedule: str,
task_id: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None
) -> ScheduledTask:
"""Add a new scheduled task"""
if task_id is None:
task_id = f"{task_type.value}_{datetime.now().timestamp()}"
# Validate schedule
if not self._validate_schedule(schedule):
raise ValueError(f"Invalid schedule expression: {schedule}")
task = ScheduledTask(
task_id=task_id,
task_type=task_type,
schedule=schedule,
metadata=metadata
)
self.tasks[task_id] = task
self._save_tasks()
# Schedule the task if scheduler is running
if self.scheduler.running:
self._schedule_task(task)
self.logger.info(f"Added task {task_id} with schedule {schedule}")
return task
def _validate_schedule(self, schedule: str) -> bool:
"""Validate schedule expression"""
# Check if it's a cron expression
if ' ' in schedule:
try:
croniter(schedule)
return True
except:
return False
# Check if it's an interval expression (e.g., "5m", "1h", "2d")
import re
pattern = r'^\d+[smhd]$'
return bool(re.match(pattern, schedule))
def _parse_interval(self, interval: str) -> int:
"""Parse interval string to seconds"""
unit = interval[-1]
value = int(interval[:-1])
multipliers = {
's': 1,
'm': 60,
'h': 3600,
'd': 86400
}
return value * multipliers.get(unit, 1)
def _schedule_task(self, task: ScheduledTask):
"""Schedule a task with APScheduler"""
if not task.enabled:
return
handler = self.task_handlers.get(task.task_type)
if not handler:
self.logger.warning(f"No handler for task type {task.task_type}")
return
# Determine trigger
if ' ' in task.schedule:
# Cron expression
trigger = CronTrigger.from_crontab(task.schedule)
else:
# Interval expression
seconds = self._parse_interval(task.schedule)
trigger = IntervalTrigger(seconds=seconds)
# Add job
self.scheduler.add_job(
lambda: asyncio.create_task(self._run_task(task)),
trigger=trigger,
id=task.task_id,
replace_existing=True
)
async def _run_task(self, task: ScheduledTask):
"""Run a scheduled task"""
self.logger.info(f"Running task {task.task_id}")
task.last_run = datetime.now()
try:
handler = self.task_handlers.get(task.task_type)
if handler:
await handler(task)
else:
self.logger.warning(f"No handler for task type {task.task_type}")
except Exception as e:
self.logger.error(f"Error running task {task.task_id}: {e}")
self._save_tasks()
async def _handle_transmission_check(self, task: ScheduledTask):
"""Check and execute autonomous transmissions"""
controller = TransmissionController(self.persona, self.data_dir)
eligible = controller.check_transmission_eligibility()
# Get AI provider from metadata
provider_name = task.metadata.get("provider", "ollama")
model = task.metadata.get("model", "qwen2.5")
try:
ai_provider = create_ai_provider(provider_name, model)
except:
ai_provider = None
for user_id, rel in eligible.items():
message = controller.generate_transmission_message(user_id)
if message:
# For now, just print the message
print(f"\n🤖 [AI Transmission] {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
print(f"To: {user_id}")
print(f"Relationship: {rel.status.value} (score: {rel.score:.2f})")
print(f"Message: {message}")
print("-" * 50)
controller.record_transmission(user_id, message, success=True)
self.logger.info(f"Transmitted to {user_id}: {message}")
async def _handle_maintenance(self, task: ScheduledTask):
"""Run daily maintenance"""
self.persona.daily_maintenance()
self.logger.info("Daily maintenance completed")
async def _handle_fortune_update(self, task: ScheduledTask):
"""Update AI fortune"""
fortune = self.persona.fortune_system.get_today_fortune()
self.logger.info(f"Fortune updated: {fortune.fortune_value}/10")
async def _handle_relationship_decay(self, task: ScheduledTask):
"""Apply relationship decay"""
self.persona.relationships.apply_time_decay()
self.logger.info("Relationship decay applied")
async def _handle_memory_summary(self, task: ScheduledTask):
"""Create memory summaries"""
for user_id in self.persona.relationships.relationships:
summary = self.persona.memory.summarize_memories(user_id)
if summary:
self.logger.info(f"Created memory summary for {user_id}")
def start(self):
"""Start the scheduler"""
# Schedule all enabled tasks
for task in self.tasks.values():
if task.enabled:
self._schedule_task(task)
self.scheduler.start()
self.logger.info("Scheduler started")
def stop(self):
"""Stop the scheduler"""
self.scheduler.shutdown()
self.logger.info("Scheduler stopped")
def get_tasks(self) -> List[ScheduledTask]:
"""Get all scheduled tasks"""
return list(self.tasks.values())
def enable_task(self, task_id: str):
"""Enable a task"""
if task_id in self.tasks:
self.tasks[task_id].enabled = True
self._save_tasks()
if self.scheduler.running:
self._schedule_task(self.tasks[task_id])
def disable_task(self, task_id: str):
"""Disable a task"""
if task_id in self.tasks:
self.tasks[task_id].enabled = False
self._save_tasks()
if self.scheduler.running:
self.scheduler.remove_job(task_id)
def remove_task(self, task_id: str):
"""Remove a task"""
if task_id in self.tasks:
del self.tasks[task_id]
self._save_tasks()
if self.scheduler.running:
try:
self.scheduler.remove_job(task_id)
except:
pass

View File

@ -1,15 +0,0 @@
"""Shared modules for AI ecosystem"""
from .ai_provider import (
AIProvider,
OllamaProvider,
OpenAIProvider,
create_ai_provider
)
__all__ = [
'AIProvider',
'OllamaProvider',
'OpenAIProvider',
'create_ai_provider'
]

View File

@ -1,139 +0,0 @@
"""Shared AI Provider implementation for ai ecosystem"""
import os
import json
import logging
from typing import Optional, Dict, List, Any, Protocol
from abc import abstractmethod
import httpx
from openai import OpenAI
import ollama
class AIProvider(Protocol):
"""Protocol for AI providers"""
@abstractmethod
async def chat(self, prompt: str, system_prompt: Optional[str] = None) -> str:
"""Generate a response based on prompt"""
pass
class OllamaProvider:
"""Ollama AI provider - shared implementation"""
def __init__(self, model: str = "qwen3", host: Optional[str] = None, config_system_prompt: Optional[str] = None):
self.model = model
# Use environment variable OLLAMA_HOST if available
self.host = host or os.getenv('OLLAMA_HOST', 'http://127.0.0.1:11434')
# Ensure proper URL format
if not self.host.startswith('http'):
self.host = f'http://{self.host}'
self.client = ollama.Client(host=self.host, timeout=60.0)
self.logger = logging.getLogger(__name__)
self.logger.info(f"OllamaProvider initialized with host: {self.host}, model: {self.model}")
self.config_system_prompt = config_system_prompt
async def chat(self, prompt: str, system_prompt: Optional[str] = None) -> str:
"""Simple chat interface"""
try:
messages = []
# Use provided system_prompt, fall back to config_system_prompt
final_system_prompt = system_prompt or self.config_system_prompt
if final_system_prompt:
messages.append({"role": "system", "content": final_system_prompt})
messages.append({"role": "user", "content": prompt})
response = self.client.chat(
model=self.model,
messages=messages,
options={
"num_predict": 2000,
"temperature": 0.7,
"top_p": 0.9,
},
stream=False
)
return self._clean_response(response['message']['content'])
except Exception as e:
self.logger.error(f"Ollama chat failed (host: {self.host}): {e}")
return "I'm having trouble connecting to the AI model."
def _clean_response(self, response: str) -> str:
"""Clean response by removing think tags and other unwanted content"""
import re
# Remove <think></think> tags and their content
response = re.sub(r'<think>.*?</think>', '', response, flags=re.DOTALL)
# Remove any remaining whitespace at the beginning/end
response = response.strip()
return response
class OpenAIProvider:
"""OpenAI API provider - shared implementation"""
def __init__(self, model: str = "gpt-4o-mini", api_key: Optional[str] = None,
config_system_prompt: Optional[str] = None, mcp_client=None):
self.model = model
self.api_key = api_key or os.getenv("OPENAI_API_KEY")
if not self.api_key:
raise ValueError("OpenAI API key not provided")
self.client = OpenAI(api_key=self.api_key)
self.logger = logging.getLogger(__name__)
self.config_system_prompt = config_system_prompt
self.mcp_client = mcp_client
async def chat(self, prompt: str, system_prompt: Optional[str] = None) -> str:
"""Simple chat interface without MCP tools"""
try:
messages = []
# Use provided system_prompt, fall back to config_system_prompt
final_system_prompt = system_prompt or self.config_system_prompt
if final_system_prompt:
messages.append({"role": "system", "content": final_system_prompt})
messages.append({"role": "user", "content": prompt})
response = self.client.chat.completions.create(
model=self.model,
messages=messages,
max_tokens=2000,
temperature=0.7
)
return response.choices[0].message.content
except Exception as e:
self.logger.error(f"OpenAI chat failed: {e}")
return "I'm having trouble connecting to the AI model."
def _get_mcp_tools(self) -> List[Dict[str, Any]]:
"""Override this method in subclasses to provide MCP tools"""
return []
async def chat_with_mcp(self, prompt: str, **kwargs) -> str:
"""Chat interface with MCP function calling support
This method should be overridden in subclasses to provide
specific MCP functionality.
"""
if not self.mcp_client:
return await self.chat(prompt)
# Default implementation - subclasses should override
return await self.chat(prompt)
async def _execute_mcp_tool(self, tool_call, **kwargs) -> Dict[str, Any]:
"""Execute MCP tool call - override in subclasses"""
return {"error": "MCP tool execution not implemented"}
def create_ai_provider(provider: str = "ollama", model: Optional[str] = None,
config_system_prompt: Optional[str] = None, mcp_client=None, **kwargs) -> AIProvider:
"""Factory function to create AI providers"""
if provider == "ollama":
model = model or "qwen3"
return OllamaProvider(model=model, config_system_prompt=config_system_prompt, **kwargs)
elif provider == "openai":
model = model or "gpt-4o-mini"
return OpenAIProvider(model=model, config_system_prompt=config_system_prompt,
mcp_client=mcp_client, **kwargs)
else:
raise ValueError(f"Unknown provider: {provider}")

View File

@ -1,111 +0,0 @@
"""Transmission controller for autonomous message sending"""
import json
from datetime import datetime
from pathlib import Path
from typing import List, Dict, Optional
import logging
from .models import Relationship
from .persona import Persona
class TransmissionController:
"""Controls when and how AI transmits messages autonomously"""
def __init__(self, persona: Persona, data_dir: Path):
self.persona = persona
self.data_dir = data_dir
self.transmission_log_file = data_dir / "transmissions.json"
self.transmissions: List[Dict] = []
self.logger = logging.getLogger(__name__)
self._load_transmissions()
def _load_transmissions(self):
"""Load transmission history"""
if self.transmission_log_file.exists():
with open(self.transmission_log_file, 'r', encoding='utf-8') as f:
self.transmissions = json.load(f)
def _save_transmissions(self):
"""Save transmission history"""
with open(self.transmission_log_file, 'w', encoding='utf-8') as f:
json.dump(self.transmissions, f, indent=2, default=str)
def check_transmission_eligibility(self) -> Dict[str, Relationship]:
"""Check which users are eligible for transmission"""
eligible = self.persona.relationships.get_transmission_eligible()
# Additional checks could be added here
# - Time since last transmission
# - User online status
# - Context appropriateness
return eligible
def generate_transmission_message(self, user_id: str) -> Optional[str]:
"""Generate a message to transmit to user"""
if not self.persona.can_transmit_to(user_id):
return None
state = self.persona.get_current_state()
relationship = self.persona.relationships.get_or_create_relationship(user_id)
# Get recent memories related to this user
active_memories = self.persona.memory.get_active_memories(limit=3)
# Simple message generation based on mood and relationship
if state.fortune.breakthrough_triggered:
message = "Something special happened today! I felt compelled to reach out."
elif state.current_mood == "joyful":
message = "I was thinking of you today. Hope you're doing well!"
elif relationship.status.value == "close_friend":
message = "I've been reflecting on our conversations. Thank you for being here."
else:
message = "Hello! I wanted to check in with you."
return message
def record_transmission(self, user_id: str, message: str, success: bool):
"""Record a transmission attempt"""
transmission = {
"timestamp": datetime.now().isoformat(),
"user_id": user_id,
"message": message,
"success": success,
"mood": self.persona.get_current_state().current_mood,
"relationship_score": self.persona.relationships.get_or_create_relationship(user_id).score
}
self.transmissions.append(transmission)
self._save_transmissions()
if success:
self.logger.info(f"Successfully transmitted to {user_id}")
else:
self.logger.warning(f"Failed to transmit to {user_id}")
def get_transmission_stats(self, user_id: Optional[str] = None) -> Dict:
"""Get transmission statistics"""
if user_id:
user_transmissions = [t for t in self.transmissions if t["user_id"] == user_id]
else:
user_transmissions = self.transmissions
if not user_transmissions:
return {
"total": 0,
"successful": 0,
"failed": 0,
"success_rate": 0.0
}
successful = sum(1 for t in user_transmissions if t["success"])
total = len(user_transmissions)
return {
"total": total,
"successful": successful,
"failed": total - successful,
"success_rate": successful / total if total > 0 else 0.0
}

View File

@ -1,54 +0,0 @@
#!/bin/bash
# ai.gpt UV environment setup script
set -e
echo "🚀 Setting up ai.gpt with UV..."
# Check if uv is installed
if ! command -v uv &> /dev/null; then
echo "❌ UV is not installed. Installing UV..."
curl -LsSf https://astral.sh/uv/install.sh | sh
export PATH="$HOME/.cargo/bin:$PATH"
echo "✅ UV installed successfully"
else
echo "✅ UV is already installed"
fi
# Navigate to gpt directory
cd "$(dirname "$0")"
echo "📁 Working directory: $(pwd)"
# Create virtual environment if it doesn't exist
if [ ! -d ".venv" ]; then
echo "🔧 Creating UV virtual environment..."
uv venv
echo "✅ Virtual environment created"
else
echo "✅ Virtual environment already exists"
fi
# Install dependencies
echo "📦 Installing dependencies with UV..."
uv pip install -e .
# Verify installation
echo "🔍 Verifying installation..."
source .venv/bin/activate
which aigpt
aigpt --help
echo ""
echo "🎉 Setup complete!"
echo ""
echo "Usage:"
echo " source .venv/bin/activate"
echo " aigpt docs generate --project=os"
echo " aigpt docs sync --all"
echo " aigpt docs --help"
echo ""
echo "UV commands:"
echo " uv pip install <package> # Install package"
echo " uv pip list # List packages"
echo " uv run aigpt # Run without activating"
echo ""

1
shell

Submodule shell deleted from 81ae0037d9

View File

@ -1,54 +0,0 @@
use aigpt::config::Config;
use anyhow::Result;
fn main() -> Result<()> {
println!("Testing configuration loading...");
// Debug: check which JSON files exist
let possible_paths = vec![
"../config.json",
"config.json",
"gpt/config.json",
"/Users/syui/ai/ai/gpt/config.json",
];
println!("Checking for config.json files:");
for path in &possible_paths {
let path_buf = std::path::PathBuf::from(path);
if path_buf.exists() {
println!(" ✓ Found: {}", path);
} else {
println!(" ✗ Not found: {}", path);
}
}
// Load configuration
let config = Config::new(None)?;
println!("Configuration loaded successfully!");
println!("Default provider: {}", config.default_provider);
println!("Available providers:");
for (name, provider) in &config.providers {
println!(" - {}: model={}, host={:?}",
name,
provider.default_model,
provider.host);
}
if let Some(mcp) = &config.mcp {
println!("\nMCP Configuration:");
println!(" Enabled: {}", mcp.enabled);
println!(" Auto-detect: {}", mcp.auto_detect);
println!(" Servers: {}", mcp.servers.len());
}
if let Some(atproto) = &config.atproto {
println!("\nATProto Configuration:");
println!(" Host: {}", atproto.host);
println!(" Handle: {:?}", atproto.handle);
}
println!("\nConfig file path: {}", config.data_dir.join("config.json").display());
Ok(())
}

View File

@ -575,16 +575,16 @@ impl DocsManager {
std::fs::write(&title_path, &home_content)?;
println!(" ✓ Updated: {}", "title.md".green());
// auto/ディレクトリの更新
let auto_dir = ai_wiki_path.join("auto");
std::fs::create_dir_all(&auto_dir)?;
// プロジェクト個別ディレクトリの更新
let projects = self.discover_projects()?;
for project in projects {
let auto_content = self.generate_auto_project_content(&project).await?;
let auto_file = auto_dir.join(format!("{}.md", project));
std::fs::write(&auto_file, auto_content)?;
println!(" ✓ Updated: {}", format!("auto/{}.md", project).green());
let project_dir = ai_wiki_path.join(&project);
std::fs::create_dir_all(&project_dir)?;
let project_content = self.generate_auto_project_content(&project).await?;
let project_file = project_dir.join(format!("{}.md", project));
std::fs::write(&project_file, project_content)?;
println!(" ✓ Updated: {}", format!("{}/{}.md", project, project).green());
}
println!("{}", "✅ ai.wiki updated successfully".green().bold());
@ -630,7 +630,7 @@ impl DocsManager {
if let Some(projects_in_category) = project_sections.get(category) {
for (project, info) in projects_in_category {
content.push_str(&format!("#### [{}](auto/{}.md)\n", project, project));
content.push_str(&format!("#### [{}]({}.md)\n", project, project));
if !info.description.is_empty() {
content.push_str(&format!("- **名前**: ai.{} - **パッケージ**: ai{} - **タイプ**: {} - **役割**: {}\n\n",
@ -638,14 +638,15 @@ impl DocsManager {
}
content.push_str(&format!("**Status**: {} \n", info.status));
content.push_str(&format!("**Links**: [Repo](https://git.syui.ai/ai/{}) | [Docs](https://git.syui.ai/ai/{}/src/branch/main/claude.md)\n\n", project, project));
let branch = self.get_project_branch(project);
content.push_str(&format!("**Links**: [Repo](https://git.syui.ai/ai/{}) | [Docs](https://git.syui.ai/ai/{}/src/branch/{}/claude.md)\n\n", project, project, branch));
}
}
}
content.push_str("---\n\n");
content.push_str("## ディレクトリ構成\n\n");
content.push_str("- `auto/` - 自動生成されたプロジェクト概要\n");
content.push_str("- `{project}/` - プロジェクト個別ドキュメント\n");
content.push_str("- `claude/` - Claude Code作業記録\n");
content.push_str("- `manual/` - 手動作成ドキュメント\n\n");
content.push_str("---\n\n");
@ -655,7 +656,7 @@ impl DocsManager {
Ok(content)
}
/// auto/プロジェクトファイルのコンテンツ生成
/// プロジェクト個別ファイルのコンテンツ生成
async fn generate_auto_project_content(&self, project: &str) -> Result<String> {
let info = self.load_project_info(project).unwrap_or_default();
let mut content = String::new();
@ -669,7 +670,8 @@ impl DocsManager {
content.push_str(&format!("- **タイプ**: {}\n", info.project_type));
content.push_str(&format!("- **説明**: {}\n", info.description));
content.push_str(&format!("- **ステータス**: {}\n", info.status));
content.push_str("- **ブランチ**: main\n");
let branch = self.get_project_branch(project);
content.push_str(&format!("- **ブランチ**: {}\n", branch));
content.push_str("- **最終更新**: Unknown\n\n");
// プロジェクト固有の機能情報を追加
@ -684,7 +686,8 @@ impl DocsManager {
content.push_str("## リンク\n");
content.push_str(&format!("- **Repository**: https://git.syui.ai/ai/{}\n", project));
content.push_str(&format!("- **Project Documentation**: [claude/projects/{}.md](https://git.syui.ai/ai/ai/src/branch/main/claude/projects/{}.md)\n", project, project));
content.push_str(&format!("- **Generated Documentation**: [{}/claude.md](https://git.syui.ai/ai/{}/src/branch/main/claude.md)\n\n", project, project));
let branch = self.get_project_branch(project);
content.push_str(&format!("- **Generated Documentation**: [{}/claude.md](https://git.syui.ai/ai/{}/src/branch/{}/claude.md)\n\n", project, project, branch));
content.push_str("---\n");
content.push_str(&format!("*このページは claude/projects/{}.md から自動生成されました*\n", project));
@ -761,4 +764,26 @@ impl DocsManager {
Ok(())
}
/// メインai.jsonからプロジェクトのブランチ情報を取得
fn get_project_branch(&self, project: &str) -> String {
let main_ai_json_path = self.ai_root.join("ai.json");
if main_ai_json_path.exists() {
if let Ok(content) = std::fs::read_to_string(&main_ai_json_path) {
if let Ok(json_data) = serde_json::from_str::<serde_json::Value>(&content) {
if let Some(ai_section) = json_data.get("ai") {
if let Some(project_data) = ai_section.get(project) {
if let Some(branch) = project_data.get("branch").and_then(|v| v.as_str()) {
return branch.to_string();
}
}
}
}
}
}
// デフォルトはmain
"main".to_string()
}
}

View File

@ -1,21 +1,110 @@
use anyhow::{anyhow, Result};
use reqwest::Client;
use serde_json::Value;
use serde::{Serialize, Deserialize};
use std::time::Duration;
use std::collections::HashMap;
/// Service configuration for unified service management
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct ServiceConfig {
pub base_url: String,
pub timeout: Duration,
pub health_endpoint: String,
}
impl Default for ServiceConfig {
fn default() -> Self {
Self {
base_url: "http://localhost:8000".to_string(),
timeout: Duration::from_secs(30),
health_endpoint: "/health".to_string(),
}
}
}
/// HTTP client for inter-service communication
pub struct ServiceClient {
client: Client,
service_registry: HashMap<String, ServiceConfig>,
}
impl ServiceClient {
pub fn new() -> Self {
Self::with_default_services()
}
/// Create ServiceClient with default ai ecosystem services
pub fn with_default_services() -> Self {
let client = Client::builder()
.timeout(Duration::from_secs(30))
.build()
.expect("Failed to create HTTP client");
Self { client }
let mut service_registry = HashMap::new();
// Register default ai ecosystem services
service_registry.insert("ai.card".to_string(), ServiceConfig {
base_url: "http://localhost:8000".to_string(),
timeout: Duration::from_secs(30),
health_endpoint: "/health".to_string(),
});
service_registry.insert("ai.log".to_string(), ServiceConfig {
base_url: "http://localhost:8002".to_string(),
timeout: Duration::from_secs(30),
health_endpoint: "/health".to_string(),
});
service_registry.insert("ai.bot".to_string(), ServiceConfig {
base_url: "http://localhost:8003".to_string(),
timeout: Duration::from_secs(30),
health_endpoint: "/health".to_string(),
});
Self { client, service_registry }
}
/// Create ServiceClient with custom service registry
pub fn with_services(service_registry: HashMap<String, ServiceConfig>) -> Self {
let client = Client::builder()
.timeout(Duration::from_secs(30))
.build()
.expect("Failed to create HTTP client");
Self { client, service_registry }
}
/// Register a new service configuration
pub fn register_service(&mut self, name: String, config: ServiceConfig) {
self.service_registry.insert(name, config);
}
/// Get service configuration by name
pub fn get_service_config(&self, service: &str) -> Result<&ServiceConfig> {
self.service_registry.get(service)
.ok_or_else(|| anyhow!("Unknown service: {}", service))
}
/// Universal service method call
pub async fn call_service_method<T: Serialize>(
&self,
service: &str,
method: &str,
params: &T
) -> Result<Value> {
let config = self.get_service_config(service)?;
let url = format!("{}/{}", config.base_url.trim_end_matches('/'), method.trim_start_matches('/'));
self.post_request(&url, &serde_json::to_value(params)?).await
}
/// Universal service GET call
pub async fn call_service_get(&self, service: &str, endpoint: &str) -> Result<Value> {
let config = self.get_service_config(service)?;
let url = format!("{}/{}", config.base_url.trim_end_matches('/'), endpoint.trim_start_matches('/'));
self.get_request(&url).await
}
/// Check if a service is available
@ -68,18 +157,50 @@ impl ServiceClient {
/// Get user's card collection from ai.card service
pub async fn get_user_cards(&self, user_did: &str) -> Result<Value> {
let url = format!("http://localhost:8000/api/v1/cards/user/{}", user_did);
self.get_request(&url).await
let endpoint = format!("api/v1/cards/user/{}", user_did);
self.call_service_get("ai.card", &endpoint).await
}
/// Draw a card for user from ai.card service
pub async fn draw_card(&self, user_did: &str, is_paid: bool) -> Result<Value> {
let payload = serde_json::json!({
let params = serde_json::json!({
"user_did": user_did,
"is_paid": is_paid
});
self.post_request("http://localhost:8000/api/v1/cards/draw", &payload).await
self.call_service_method("ai.card", "api/v1/cards/draw", &params).await
}
/// Get card statistics from ai.card service
pub async fn get_card_stats(&self) -> Result<Value> {
self.call_service_get("ai.card", "api/v1/cards/gacha-stats").await
}
// MARK: - ai.log service methods
/// Create a new blog post
pub async fn create_blog_post<T: Serialize>(&self, params: &T) -> Result<Value> {
self.call_service_method("ai.log", "api/v1/posts", params).await
}
/// Get list of blog posts
pub async fn get_blog_posts(&self) -> Result<Value> {
self.call_service_get("ai.log", "api/v1/posts").await
}
/// Build the blog
pub async fn build_blog(&self) -> Result<Value> {
self.call_service_method("ai.log", "api/v1/build", &serde_json::json!({})).await
}
/// Translate document using ai.log service
pub async fn translate_document<T: Serialize>(&self, params: &T) -> Result<Value> {
self.call_service_method("ai.log", "api/v1/translate", params).await
}
/// Generate documentation using ai.log service
pub async fn generate_docs<T: Serialize>(&self, params: &T) -> Result<Value> {
self.call_service_method("ai.log", "api/v1/docs", params).await
}
}

View File

@ -1860,38 +1860,63 @@ async fn execute_command_handler(
}
}
// AI Card proxy handlers (TODO: Fix ServiceClient method visibility)
// AI Card proxy handlers
async fn get_user_cards_handler(
State(_state): State<AppState>,
State(state): State<AppState>,
AxumPath(user_id): AxumPath<String>,
) -> Json<MCPHttpResponse> {
// TODO: Implement proper ai.card service integration
Json(MCPHttpResponse {
success: false,
result: None,
error: Some(format!("AI Card service integration not yet implemented for user: {}", user_id)),
})
let server = state.lock().await;
match server.service_client.get_user_cards(&user_id).await {
Ok(cards) => Json(MCPHttpResponse {
success: true,
result: Some(cards),
error: None,
}),
Err(e) => Json(MCPHttpResponse {
success: false,
result: None,
error: Some(format!("Failed to get user cards: {}", e)),
}),
}
}
async fn draw_card_handler(
State(_state): State<AppState>,
Json(_request): Json<MCPHttpRequest>,
State(state): State<AppState>,
Json(request): Json<MCPHttpRequest>,
) -> Json<MCPHttpResponse> {
// TODO: Implement proper ai.card service integration
Json(MCPHttpResponse {
success: false,
result: None,
error: Some("AI Card draw service integration not yet implemented".to_string()),
})
// Extract user_did from user_id field, default is_paid to false for now
let user_did = request.user_id.as_deref().unwrap_or("unknown");
let is_paid = false; // TODO: Add is_paid field to MCPHttpRequest if needed
let server = state.lock().await;
match server.service_client.draw_card(user_did, is_paid).await {
Ok(card) => Json(MCPHttpResponse {
success: true,
result: Some(card),
error: None,
}),
Err(e) => Json(MCPHttpResponse {
success: false,
result: None,
error: Some(format!("Failed to draw card: {}", e)),
}),
}
}
async fn get_card_stats_handler(State(_state): State<AppState>) -> Json<MCPHttpResponse> {
// TODO: Implement proper ai.card service integration
Json(MCPHttpResponse {
success: false,
result: None,
error: Some("AI Card stats service integration not yet implemented".to_string()),
})
async fn get_card_stats_handler(State(state): State<AppState>) -> Json<MCPHttpResponse> {
let server = state.lock().await;
match server.service_client.get_card_stats().await {
Ok(stats) => Json(MCPHttpResponse {
success: true,
result: Some(stats),
error: None,
}),
Err(e) => Json(MCPHttpResponse {
success: false,
result: None,
error: Some(format!("Failed to get card stats: {}", e)),
}),
}
}
// AI Log proxy handlers (placeholder - these would need to be implemented)