Critical improvements based on technical review:
## Fixed Issues (Priority: High)
1. AI features now properly integrated with MCP server
- Added create_memory_with_ai tool (was implemented but unused!)
- Added list_memories_by_priority tool
- All memory outputs now include new fields: interpreted_content, priority_score, user_context
2. Added getter methods to MemoryManager
- get_memory(id) for single memory retrieval
- get_all_memories() for bulk access
3. Complete memory information in MCP responses
- search_memories now returns all fields
- Priority-based filtering and sorting functional
## New Files
- docs/TECHNICAL_REVIEW.md: Comprehensive technical evaluation
- Scores: 65/100 overall, identified key improvements
- Actionable recommendations for Phase 1-3
- Architecture proposals and code examples
## Updated Documentation
- README.md: Added usage examples for new AI tools
- Clear distinction between basic and AI-powered tools
## Technical Debt Identified
- openai crate version needs update (see review doc)
- Config externalization needed
- Test suite missing
- LLM provider abstraction recommended
This brings the implementation in line with the "psychological priority memory"
concept. The AI interpretation and scoring features are now actually usable!
Next: Phase 2 improvements (config externalization, error handling)
Core changes:
- Add AI interpreter module for content interpretation and priority scoring
- Extend Memory struct with interpreted_content, priority_score (f32: 0.0-1.0), and user_context
- Implement automatic memory pruning based on priority scores
- Add capacity management (default: 100 memories max)
- Create comprehensive design documentation
Technical details:
- Changed priority_score from u8 (1-100) to f32 (0.0-1.0) for better AI compatibility
- Add create_memory_with_ai() method for AI-enhanced memory creation
- Implement get_memories_by_priority() for priority-based sorting
- Score evaluation criteria: emotional impact, user relevance, novelty, utility
Philosophy:
This implements a "psychological priority memory system" where AI interprets
and evaluates memories rather than storing raw content. Inspired by how human
memory works - interpreting and prioritizing rather than perfect recording.