Commit Graph

14 Commits

Author SHA1 Message Date
Claude
00c26f5984 Refactor: Integrate AI features with MCP tools and add technical review
Critical improvements based on technical review:

## Fixed Issues (Priority: High)
1. AI features now properly integrated with MCP server
   - Added create_memory_with_ai tool (was implemented but unused!)
   - Added list_memories_by_priority tool
   - All memory outputs now include new fields: interpreted_content, priority_score, user_context

2. Added getter methods to MemoryManager
   - get_memory(id) for single memory retrieval
   - get_all_memories() for bulk access

3. Complete memory information in MCP responses
   - search_memories now returns all fields
   - Priority-based filtering and sorting functional

## New Files
- docs/TECHNICAL_REVIEW.md: Comprehensive technical evaluation
  - Scores: 65/100 overall, identified key improvements
  - Actionable recommendations for Phase 1-3
  - Architecture proposals and code examples

## Updated Documentation
- README.md: Added usage examples for new AI tools
- Clear distinction between basic and AI-powered tools

## Technical Debt Identified
- openai crate version needs update (see review doc)
- Config externalization needed
- Test suite missing
- LLM provider abstraction recommended

This brings the implementation in line with the "psychological priority memory"
concept. The AI interpretation and scoring features are now actually usable!

Next: Phase 2 improvements (config externalization, error handling)
2025-11-05 14:17:14 +00:00
Claude
fd97ba2d81 Implement AI memory system with psychological priority scoring
Core changes:
- Add AI interpreter module for content interpretation and priority scoring
- Extend Memory struct with interpreted_content, priority_score (f32: 0.0-1.0), and user_context
- Implement automatic memory pruning based on priority scores
- Add capacity management (default: 100 memories max)
- Create comprehensive design documentation

Technical details:
- Changed priority_score from u8 (1-100) to f32 (0.0-1.0) for better AI compatibility
- Add create_memory_with_ai() method for AI-enhanced memory creation
- Implement get_memories_by_priority() for priority-based sorting
- Score evaluation criteria: emotional impact, user relevance, novelty, utility

Philosophy:
This implements a "psychological priority memory system" where AI interprets
and evaluates memories rather than storing raw content. Inspired by how human
memory works - interpreting and prioritizing rather than perfect recording.
2025-11-05 14:09:39 +00:00
4620d0862a add extended 2025-07-29 04:08:29 +09:00
5564db014a cleanup 2025-06-09 02:48:44 +09:00
df86fb827e cleanup 2025-06-03 05:09:56 +09:00
cba52b6171 update ai.shell 2025-06-03 01:01:28 +09:00
b642588696 fix docs 2025-06-02 18:24:04 +09:00
ebd2582b92 update 2025-06-02 06:22:39 +09:00
79d1e1943f add card 2025-06-02 06:22:38 +09:00
62f941a958 fix config 2025-06-02 00:31:46 +09:00
98ca92d85d fix dir 2025-06-01 21:43:16 +09:00
7c3b05501f fix 2025-05-31 01:47:58 +09:00
a7b61fe07d fix 2025-05-30 20:07:06 +09:00
9866da625d fix 2025-05-30 04:40:29 +09:00