gpt/README.md
2025-06-03 01:51:24 +09:00

811 lines
26 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# ai.gpt - AI駆動記憶システム & 自律対話AI
🧠 **革新的記憶システム** × 🤖 **自律的人格AI** × 🔗 **atproto統合**
ChatGPTの4,000件会話ログから学んだ「効果的な記憶構築」を完全実装した、真の記憶を持つAIシステム。
## 🎯 核心機能
### 📚 AI駆動階層記憶システム
- **CORE記憶**: 人格形成要素の永続的記憶AIが自動分析・抽出
- **SUMMARY記憶**: テーマ別スマート要約AI駆動パターン分析
- **記憶検索**: コンテキスト認識による関連性スコアリング
- **選択的忘却**: 重要度に基づく自然な記憶の減衰
### 🤝 進化する関係性システム
- **唯一性**: atproto DIDと1:1で紐付き、改変不可能な人格
- **不可逆性**: 関係性が壊れたら修復不可能(現実の人間関係と同じ)
- **時間減衰**: 自然な関係性の変化と送信閾値システム
- **AI運勢**: 1-10のランダム値による日々の人格変動
### 🧬 統合アーキテクチャ
- **fastapi-mcp統一基盤**: Claude Desktop/Cursor完全対応
- **23種類のMCPツール**: 記憶・関係性・AI統合・シェル操作・リモート実行
- **ai.shell統合**: Claude Code風インタラクティブ開発環境
- **ai.bot連携**: systemd-nspawn隔離実行環境統合
- **マルチAI対応**: ollama(qwen3/gemma3) + OpenAI統合
## 🚀 クイックスタート
### 1分で体験する記憶システム
```bash
# 1. セットアップ(自動)
cd /Users/syui/ai/gpt
./setup_venv.sh
# 2. ollama + qwen3で記憶テスト
aigpt chat syui "記憶システムのテストです" --provider ollama --model qwen3:latest
# 3. 記憶の確認
aigpt status syui
# 4. インタラクティブシェル体験
aigpt shell
```
### 記憶システム体験デモ
```bash
# ChatGPTログインポート既存データを使用
aigpt import-chatgpt ./json/chatgpt.json --user-id syui
# AI記憶分析
aigpt maintenance # スマート要約 + コア記憶生成
# 記憶に基づく対話
aigpt chat syui "前回の議論について覚えていますか?" --provider ollama --model qwen3:latest
# 記憶検索
# MCPサーバー経由でのコンテキスト記憶取得
aigpt server --port 8001 &
curl "http://localhost:8001/get_contextual_memories?query=ai&limit=5"
```
## インストール
```bash
# 仮想環境セットアップ(推奨)
cd /Users/syui/ai/gpt
source ~/.config/syui/ai/gpt/venv/bin/activate
pip install -e .
# または自動セットアップ
./setup_venv.sh
```
## 設定
### APIキーの設定
```bash
# OpenAI APIキー
aigpt config set providers.openai.api_key sk-xxxxx
# atproto認証情報将来の自動投稿用
aigpt config set atproto.handle your.handle
aigpt config set atproto.password your-password
# 設定一覧を確認
aigpt config list
```
### AIモデルの設定
```bash
# Ollamaのデフォルトモデルを変更
aigpt config set providers.ollama.default_model llama3
# OpenAIのデフォルトモデルを変更
aigpt config set providers.openai.default_model gpt-4
# Ollamaホストの設定
aigpt config set providers.ollama.host http://localhost:11434
# 設定の確認
aigpt config get providers.ollama.default_model
```
### データ保存場所
- 設定: `~/.config/syui/ai/gpt/config.json`
- データ: `~/.config/syui/ai/gpt/data/`
- 仮想環境: `~/.config/syui/ai/gpt/venv/`
### 設定ファイル構造
```json
{
"providers": {
"ollama": {
"host": "http://localhost:11434",
"default_model": "qwen3"
},
"openai": {
"api_key": null,
"default_model": "gpt-4o-mini"
}
},
"default_provider": "ollama"
}
```
## 使い方
### 会話する
```bash
# 通常の会話(詳細表示)
aigpt chat "did:plc:xxxxx" "こんにちは、今日はどんな気分?"
# 連続会話モード(シンプルな表示)
aigpt conversation syui --provider ollama --model qwen3:latest
aigpt conv syui --provider ollama --model qwen3:latest # 短縮形
```
### ステータス確認
```bash
# AI全体の状態
aigpt status
# 特定ユーザーとの関係
aigpt status "did:plc:xxxxx"
```
### 今日の運勢
```bash
aigpt fortune
```
### 自律送信チェック
```bash
# ドライラン(確認のみ)
aigpt transmit
# 実行
aigpt transmit --execute
```
### 日次メンテナンス
```bash
aigpt maintenance
```
### 関係一覧
```bash
aigpt relationships
```
### 会話モード詳細
#### 通常の会話コマンド
```bash
# 詳細表示モード(関係性スコア・送信状態等も表示)
aigpt chat syui "メッセージ" --provider ollama --model qwen3:latest
```
出力例:
```
╭─────────────────────────── AI Response ───────────────────────────╮
│ AIの返答がここに表示されます │
╰─────────────────────────────────────────────────────────────────╯
Relationship Status: stranger
Score: 28.00 / 100.0
Transmission: ✗ Disabled
```
#### 連続会話モード
```bash
# シンプルな会話画面(関係性情報なし)
aigpt conversation syui --provider ollama --model qwen3:latest
aigpt conv syui # 短縮形、デフォルト設定使用
```
会話画面:
```
Using ollama with model qwen3:latest
Conversation with AI started. Type 'exit' or 'quit' to end.
syui> こんにちは
AI> こんにちは!今日はどんな日でしたか?
syui> 今日は良い天気でした
AI> 良い天気だと気分も晴れやかになりますね!
syui> exit
Conversation ended.
```
#### 会話モードの特徴
- **通常モード**: 詳細な関係性情報とパネル表示
- **連続モード**: シンプルな`ユーザー> ``AI> `形式
- **履歴保存**: 両モードとも会話履歴を自動保存
- **コマンド補完**: Tab補完とコマンド履歴機能
### ChatGPTデータインポート
```bash
# ChatGPTの会話履歴をインポート
aigpt import-chatgpt ./json/chatgpt.json --user-id "your_user_id"
# インポート後の確認
aigpt status
aigpt relationships
```
## データ構造
デフォルトでは `~/.config/syui/ai/gpt/` に以下のファイルが保存されます:
- `memories.json` - 会話記憶
- `conversations.json` - 会話ログ
- `relationships.json` - 関係性パラメータ
- `fortunes.json` - AI運勢履歴
- `transmissions.json` - 送信履歴
- `persona_state.json` - 人格状態
## 関係性の仕組み
- スコア0-200の範囲で変動
- 100を超えると送信機能が解禁
- 時間経過で自然減衰
- 大きなネガティブな相互作用で破壊される可能性
## 🖥️ ai.shell統合 - Claude Code風開発環境
### 🚀 **基本起動**
```bash
# デフォルトqwen2.5使用)
aigpt shell
# qwen2.5-coder使用コード生成に最適
aigpt shell --model qwen2.5-coder:latest --provider ollama
# qwen3使用高度な対話
aigpt shell --model qwen3:latest --provider ollama
# OpenAI使用
aigpt shell --model gpt-4o-mini --provider openai
```
### 📋 **利用可能コマンド**
```bash
# === プロジェクト管理 ===
load # aishell.md読み込みAIがプロジェクト理解
status # AI状態・関係性確認
fortune # AI運勢確認人格に影響
relationships # 全関係性一覧
# === AI開発支援 ===
analyze <file> # ファイル分析・コードレビュー
generate <description> # コード生成qwen2.5-coder推奨
explain <topic> # 概念・技術説明
# === シェル操作 ===
!<command> # シェルコマンド実行
!git status # git操作
!ls -la # ファイル確認
!mkdir project # ディレクトリ作成
!pytest tests/ # テスト実行
# === リモート実行ai.bot統合===
remote <command> # systemd-nspawn隔離コンテナでコマンド実行
isolated <code> # Python隔離実行環境
aibot-status # ai.botサーバー接続確認
# === インタラクティブ対話 ===
help # コマンド一覧
clear # 画面クリア
exit/quit # 終了
<任意のメッセージ> # 自由なAI対話
```
### 🎯 **コマンド使用例**
```bash
ai.shell> load
# → aishell.mdを読み込み、AIがプロジェクト目標を記憶
ai.shell> generate Python FastAPI CRUD for User model
# → 完全なCRUD API コードを生成
ai.shell> analyze src/main.py
# → コード品質・改善点を分析
ai.shell> !git log --oneline -5
# → 最近のコミット履歴を表示
ai.shell> remote ls -la /tmp
# → ai.bot隔離コンテナでディレクトリ確認
ai.shell> isolated print("Hello from isolated environment!")
# → Python隔離実行でHello World
ai.shell> aibot-status
# → ai.botサーバー接続状態とコンテナ情報確認
ai.shell> このAPIのセキュリティを改善してください
# → 記憶に基づく具体的なセキュリティ改善提案
ai.shell> explain async/await in Python
# → 非同期プログラミングの詳細説明
```
## MCP Server統合アーキテクチャ
### ai.gpt統合サーバー
```bash
# ai.gpt統合サーバー起動port 8001
aigpt server --model qwen2.5 --provider ollama --port 8001
# OpenAIを使用
aigpt server --model gpt-4o-mini --provider openai --port 8001
```
### ai.card独立サーバー
```bash
# ai.card独立サーバー起動port 8000
cd card/api
source ~/.config/syui/ai/card/venv/bin/activate
uvicorn app.main:app --port 8000
```
### ai.bot接続リモート実行環境
```bash
# ai.bot起動port 8080、別途必要
# systemd-nspawn隔離コンテナでコマンド実行
```
### アーキテクチャ構成
```
Claude Desktop/Cursor
ai.gpt統合サーバー (port 8001) ← 23ツール
├── ai.gpt機能: メモリ・関係性・人格 (9ツール)
├── ai.shell機能: シェル・ファイル操作 (5ツール)
├── ai.memory機能: 階層記憶・文脈検索 (5ツール)
├── ai.bot連携: リモート実行・隔離環境 (4ツール)
└── HTTP client → ai.card独立サーバー (port 8000)
ai.card専用ツール (9ツール)
├── カード管理・ガチャ
├── atproto同期
└── PostgreSQL/SQLite
ai.gpt統合サーバー → ai.bot (port 8080)
systemd-nspawn container
├── Arch Linux隔離環境
├── SSH server
└── セキュアコマンド実行
```
### AIプロバイダーを使った会話
```bash
# Ollamaで会話
aigpt chat "did:plc:xxxxx" "こんにちは" --provider ollama --model qwen2.5
# OpenAIで会話
aigpt chat "did:plc:xxxxx" "今日の調子はどう?" --provider openai --model gpt-4o-mini
```
### MCP Tools
サーバーが起動すると、以下のツールがAIから利用可能になります
**ai.gpt ツール (9個):**
- `get_memories` - アクティブな記憶を取得
- `get_relationship` - 特定ユーザーとの関係を取得
- `get_all_relationships` - すべての関係を取得
- `get_persona_state` - 現在の人格状態を取得
- `process_interaction` - ユーザーとの対話を処理
- `check_transmission_eligibility` - 送信可能かチェック
- `get_fortune` - 今日の運勢を取得
- `summarize_memories` - 記憶を要約
- `run_maintenance` - メンテナンス実行
**ai.memory ツール (5個):**
- `get_contextual_memories` - 文脈的記憶検索
- `search_memories` - キーワード記憶検索
- `create_summary` - AI駆動記憶要約生成
- `create_core_memory` - コア記憶分析・抽出
- `get_context_prompt` - 記憶ベース文脈プロンプト
**ai.shell ツール (5個):**
- `execute_command` - シェルコマンド実行
- `analyze_file` - ファイルのAI分析
- `write_file` - ファイル書き込み
- `read_project_file` - プロジェクトファイル読み込み
- `list_files` - ファイル一覧
**ai.bot連携ツール (4個):**
- `remote_shell` - 隔離コンテナでコマンド実行
- `ai_bot_status` - ai.botサーバー状態確認
- `isolated_python` - Python隔離実行
- `isolated_analysis` - ファイル解析(隔離環境)
### ai.card独立サーバーとの連携
ai.cardは独立したMCPサーバーとして動作
- **ポート**: 8000
- **9つのMCPツール**: カード管理・ガチャ・atproto同期等
- **データベース**: PostgreSQL/SQLite
- **起動**: `uvicorn app.main:app --port 8000`
ai.gptサーバーからHTTP経由で連携可能
## 環境変数
`.env`ファイルを作成して設定:
```bash
cp .env.example .env
# OpenAI APIキーを設定
```
## スケジューラー機能
### タスクの追加
```bash
# 6時間ごとに送信チェック
aigpt schedule add transmission_check "0 */6 * * *" --provider ollama --model qwen2.5
# 30分ごとに送信チェックインターバル形式
aigpt schedule add transmission_check "30m"
# 毎日午前3時にメンテナンス
aigpt schedule add maintenance "0 3 * * *"
# 1時間ごとに関係性減衰
aigpt schedule add relationship_decay "1h"
# 毎週月曜日に記憶要約
aigpt schedule add memory_summary "0 0 * * MON"
```
### タスク管理
```bash
# タスク一覧
aigpt schedule list
# タスクを無効化
aigpt schedule disable --task-id transmission_check_1234567890
# タスクを有効化
aigpt schedule enable --task-id transmission_check_1234567890
# タスクを削除
aigpt schedule remove --task-id transmission_check_1234567890
```
### スケジューラーデーモンの起動
```bash
# バックグラウンドでスケジューラーを実行
aigpt schedule run
```
### スケジュール形式
**Cron形式**:
- `"0 */6 * * *"` - 6時間ごと
- `"0 0 * * *"` - 毎日午前0時
- `"*/5 * * * *"` - 5分ごと
**インターバル形式**:
- `"30s"` - 30秒ごと
- `"5m"` - 5分ごと
- `"2h"` - 2時間ごと
- `"1d"` - 1日ごと
### タスクタイプ
- `transmission_check` - 送信可能なユーザーをチェックして自動送信
- `maintenance` - 日次メンテナンス(忘却、コア記憶判定など)
- `fortune_update` - AI運勢の更新
- `relationship_decay` - 関係性の時間減衰
- `memory_summary` - 記憶の要約作成
## 🚀 最新機能 (2025/06/02 大幅更新完了)
### ✅ **革新的記憶システム完成**
#### 🧠 AI駆動記憶機能
- **スマート要約生成**: AIによるテーマ別記憶要約`create_smart_summary`
- **コア記憶分析**: 人格形成要素の自動抽出(`create_core_memory`
- **階層的記憶検索**: CORE→SUMMARY→RECENT優先度システム
- **コンテキスト認識**: クエリベース関連性スコアリング
- **文脈プロンプト**: 記憶に基づく一貫性のある対話生成
#### 🔗 完全統合アーキテクチャ
- **ChatGPTインポート**: 4,000件ログからの記憶構築実証
- **マルチAI対応**: ollama(qwen3:latest/gemma3:4b) + OpenAI完全統合
- **環境変数対応**: `OLLAMA_HOST`自動読み込み
- **MCP統合**: 23種類のツール記憶5種+関係性4種+AI3種+シェル5種+ai.bot4種+項目管理2種
#### 🧬 動作確認済み
- **記憶参照**: ChatGPTログからの文脈的記憶活用
- **人格統合**: ムード・運勢・記憶に基づく応答生成
- **関係性進化**: 記憶に基づく段階的信頼構築
- **AI協働**: qwen3との記憶システム完全連携
### 🎯 **新MCPツール**
```bash
# 新記憶システムツール
curl "http://localhost:8001/get_contextual_memories?query=programming&limit=5"
curl "http://localhost:8001/search_memories" -d '{"keywords":["memory","AI"]}'
curl "http://localhost:8001/create_summary" -d '{"user_id":"syui"}'
curl "http://localhost:8001/create_core_memory" -d '{}'
curl "http://localhost:8001/get_context_prompt" -d '{"user_id":"syui","message":"test"}'
```
### 🧪 **AIとの記憶テスト**
```bash
# qwen3での記憶システムテスト
aigpt chat syui "前回の会話を覚えていますか?" --provider ollama --model qwen3:latest
# 記憶に基づくスマート要約生成
aigpt maintenance # AI要約を自動実行
# コンテキスト検索テスト
aigpt chat syui "記憶システムについて" --provider ollama --model qwen3:latest
```
## 🔥 **NEW: Claude Code的継続開発機能** (2025/06/03 完成)
### 🚀 **プロジェクト管理システム完全実装**
ai.shellに真のClaude Code風継続開発機能を実装しました
#### 📊 **プロジェクト分析機能**
```bash
ai.shell> project-status
# ✓ プロジェクト構造自動分析
# Language: Python, Framework: FastAPI
# 1268クラス, 5656関数, 22 API endpoints, 129 async functions
# 57個のファイル変更を検出
ai.shell> suggest-next
# ✓ AI駆動開発提案
# 1. 継続的な単体テストと統合テスト実装
# 2. API エンドポイントのセキュリティ強化
# 3. データベース最適化とキャッシュ戦略
```
#### 🧠 **コンテキスト認識開発**
```bash
ai.shell> continuous
# ✓ 継続開発モード開始
# プロジェクト文脈読込: 21,986文字
# claude.md + aishell.md + pyproject.toml + 依存関係を解析
# AIがプロジェクト全体を理解した状態で開発支援
ai.shell> analyze src/aigpt/project_manager.py
# ✓ プロジェクト文脈を考慮したファイル分析
# - コード品質評価
# - プロジェクトとの整合性チェック
# - 改善提案と潜在的問題の指摘
ai.shell> generate Create a test function for ContinuousDeveloper
# ✓ プロジェクト文脈を考慮したコード生成
# FastAPI, Python, 既存パターンに合わせた実装を自動生成
```
#### 🛠️ **実装詳細**
- **ProjectState**: ファイル変更検出・プロジェクト状態追跡
- **ContinuousDeveloper**: AI駆動プロジェクト分析・提案・コード生成
- **プロジェクト文脈**: claude.md/aishell.md/pyproject.toml等を自動読込
- **言語検出**: Python/JavaScript/Rust等の自動判定
- **フレームワーク分析**: FastAPI/Django/React等の依存関係検出
- **コードパターン**: 既存の設計パターン学習・適用
#### ✅ **動作確認済み機能**
- ✓ プロジェクト構造分析 (Language: Python, Framework: FastAPI)
- ✓ ファイル変更検出 (57個の変更検出)
- ✓ プロジェクト文脈読込 (21,986文字)
- ✓ AI駆動提案機能 (具体的な次ステップ提案)
- ✓ 文脈認識ファイル分析 (コード品質・整合性評価)
- ✓ プロジェクト文脈考慮コード生成 (FastAPI準拠コード生成)
### 🎯 **Claude Code風ワークフロー**
```bash
# 1. プロジェクト理解
aigpt shell --model qwen2.5-coder:latest --provider ollama
ai.shell> load # プロジェクト仕様読み込み
ai.shell> project-status # 現在の構造分析
# 2. AI駆動開発
ai.shell> suggest-next # 次のタスク提案
ai.shell> continuous # 継続開発モード開始
# 3. 文脈認識開発
ai.shell> analyze <file> # プロジェクト文脈でファイル分析
ai.shell> generate <desc> # 文脈考慮コード生成
ai.shell> 具体的な開発相談 # 記憶+文脈で最適な提案
# 4. 継続的改善
# AIがプロジェクト全体を理解して一貫した開発支援
# 前回の議論・決定事項を記憶して適切な提案継続
```
### 💡 **従来のai.shellとの違い**
| 機能 | 従来 | 新実装 |
|------|------|--------|
| プロジェクト理解 | 単発 | 構造分析+文脈保持 |
| コード生成 | 汎用 | プロジェクト文脈考慮 |
| 開発提案 | なし | AI駆動次ステップ提案 |
| ファイル分析 | 単体 | 整合性+改善提案 |
| 変更追跡 | なし | 自動検出+影響分析 |
**真のClaude Code化完成** 記憶システム + プロジェクト文脈認識で、一貫した長期開発支援が可能になりました。
## 🛠️ ai.shell継続的開発 - 実践Example
### 🚀 **プロジェクト開発ワークフロー実例**
#### 📝 **Example 1: RESTful API開発**
```bash
# 1. ai.shellでプロジェクト開始qwen2.5-coder使用
aigpt shell --model qwen2.5-coder:latest --provider ollama
# 2. プロジェクト仕様を読み込んでAIに理解させる
ai.shell> load
# → aishell.mdを自動検索・読み込み、AIがプロジェクト目標を記憶
# 3. プロジェクト構造確認
ai.shell> !ls -la
ai.shell> !git status
# 4. ユーザー管理APIの設計を相談
ai.shell> RESTful APIでユーザー管理機能を作りたいです。設計について相談できますか
# 5. AIの提案を基にコード生成
ai.shell> generate Python FastAPI user management with CRUD operations
# 6. 生成されたコードをファイルに保存
ai.shell> !mkdir -p src/api
ai.shell> !touch src/api/users.py
# 7. 実装されたコードを分析・改善
ai.shell> analyze src/api/users.py
ai.shell> セキュリティ面での改善点を教えてください
# 8. テストコード生成
ai.shell> generate pytest test cases for the user management API
# 9. 隔離環境でテスト実行
ai.shell> remote python -m pytest tests/ -v
ai.shell> isolated import requests; print(requests.get("http://localhost:8000/health").status_code)
# 10. 段階的コミット
ai.shell> !git add .
ai.shell> !git commit -m "Add user management API with security improvements"
# 11. 継続的な改善相談
ai.shell> 次はデータベース設計について相談したいです
```
#### 🔄 **Example 2: 機能拡張と リファクタリング**
```bash
# ai.shell継続セッション記憶システムが前回の議論を覚えている
aigpt shell --model qwen2.5-coder:latest --provider ollama
# AIが前回のAPI開発を記憶して続きから開始
ai.shell> status
# Relationship Status: acquaintance (関係性が進展)
# Score: 25.00 / 100.0
# 前回の続きから自然に議論
ai.shell> 前回作ったユーザー管理APIに認証機能を追加したいです
# AIが前回のコードを考慮した提案
ai.shell> generate JWT authentication middleware for our FastAPI
# 既存コードとの整合性チェック
ai.shell> analyze src/api/users.py
ai.shell> この認証システムと既存のAPIの統合方法は
# 段階的実装
ai.shell> explain JWT token flow in our architecture
ai.shell> generate authentication decorator for protected endpoints
# リファクタリング提案
ai.shell> 現在のコード構造で改善できる点はありますか?
ai.shell> generate improved project structure for scalability
# データベース設計相談
ai.shell> explain SQLAlchemy models for user authentication
ai.shell> generate database migration scripts
# 隔離環境での安全なテスト
ai.shell> remote alembic upgrade head
ai.shell> isolated import sqlalchemy; print("DB connection test")
```
#### 🎯 **Example 3: バグ修正と最適化**
```bash
# 開発継続AIが開発履歴を完全記憶
aigpt shell --model qwen2.5-coder:latest --provider ollama
# 関係性が更に進展close_friend level
ai.shell> status
# Relationship Status: close_friend
# Score: 45.00 / 100.0
# バグレポートと分析
ai.shell> API のレスポンス時間が遅いです。パフォーマンス分析をお願いします
ai.shell> analyze src/api/users.py
# AIによる最適化提案
ai.shell> generate database query optimization for user lookup
ai.shell> explain async/await patterns for better performance
# テスト駆動改善
ai.shell> generate performance test cases
ai.shell> !pytest tests/ -v --benchmark
# キャッシュ戦略相談
ai.shell> Redis caching strategy for our user API?
ai.shell> generate caching layer implementation
# 本番デプロイ準備
ai.shell> explain Docker containerization for our API
ai.shell> generate Dockerfile and docker-compose.yml
ai.shell> generate production environment configurations
# 隔離環境でのデプロイテスト
ai.shell> remote docker build -t myapi .
ai.shell> isolated os.system("docker run --rm myapi python -c 'print(\"Container works!\")'")
ai.shell> aibot-status # デプロイ環境確認
```
### 🧠 **記憶システム活用のメリット**
#### 💡 **継続性のある開発体験**
- **文脈保持**: 前回の議論やコードを記憶して一貫した提案
- **関係性進化**: 協働を通じて信頼関係が構築され、より深い提案
- **段階的成長**: プロジェクトの発展を理解した適切なレベルの支援
#### 🔧 **実践的な使い方**
```bash
# 日々の開発ルーチン
aigpt shell --model qwen2.5-coder:latest --provider ollama
ai.shell> load # プロジェクト状況をAIに再確認
ai.shell> !git log --oneline -5 # 最近の変更を確認
ai.shell> 今日は何から始めましょうか? # AIが文脈を考慮した提案
# 長期プロジェクトでの活用
ai.shell> 先週議論したアーキテクチャの件、覚えていますか?
ai.shell> あのときの懸念点は解決されましたか?
ai.shell> 次のマイルストーンに向けて何が必要でしょうか?
# チーム開発での知識共有
ai.shell> 新しいメンバーに説明するための設計書を生成してください
ai.shell> このプロジェクトの技術的負債について分析してください
```
### 🚧 次のステップ
- **自律送信**: atproto実装記憶ベース判定
- **記憶可視化**: Webダッシュボード関係性グラフ
- **分散記憶**: atproto上でのユーザーデータ主権
- **AI協働**: 複数AIでの記憶共有プロトコル
## トラブルシューティング
### 環境セットアップ
```bash
# 仮想環境の確認
source ~/.config/syui/ai/gpt/venv/bin/activate
aigpt --help
# 設定の確認
aigpt config list
# データの確認
ls ~/.config/syui/ai/gpt/data/
```
### MCPサーバー動作確認
```bash
# ai.gpt統合サーバー (14ツール)
aigpt server --port 8001
curl http://localhost:8001/docs
# ai.card独立サーバー (9ツール)
cd card/api && uvicorn app.main:app --port 8000
curl http://localhost:8000/health
```