Files
lang/README.md
2025-07-23 14:43:07 +09:00

2.8 KiB
Raw History

Synaptic: AIQ<><51><D7><ED><B0><E9><DF><F3><B0>hOS

AIL<06>W<E3>\W<>YD!<16>n<E3><6E><D7><ED><B0><E9><DF><F3><B0>h<9E><68><AA><DA>ƣ󰷹<C6A3><F3B0B7B9>nv<>z<8B><7A><D7><ED><B8><A7>

<D7><ED><B8><A7><AF><C8>Ӹ<E7><F3>

<93>en<EFBFBD><9E>hOSo<BA><93>n_<81>k-U<>fD~YLAIB<49>ko**AIL<49><4C><EFBFBD><82><B9>k<84>\gM<67><4D><8B><B7><B9>**LŁgYSynaptico<01><>n<06><><E3>'<27><><88>AIn<49>'<27>*HW_i<5F><69>j<84><6A><A2><D7><ED>gY

<9F><C5>_<7F>

1. <20>,<2C><><EFBFBD><9E><B7><B9>

  • AST (<28>aˇ() <20><><D9>nh<6E>: <20><><BD><FC><B9>Ɉ<FC><C988>ASTL,<2C><1A>ָ<AA><D6B8><A7>
  • <B0><E9><D5><D9><FC><B9>n<9F>L<E2><C7><EB>: <20><><C7><FC><BF><D5>k<FC>eO&<17>L
  • <A3><EFBFBD><84>ˇ: U<> `Q<18>W iF<69>cf oAILz<4C>

2. <20><><BA><87><84><D7><ED><B0><E9><DF>

probabilistic function predict(image) {
    features ~ extract_features(image)
    prediction ~ softmax(linear(features))
    @confidence: entropy(prediction) < threshold
    return sample(prediction)
}

<BA><9F>'n:<3A>jh<6A>

  • ٤<BA><A8><D6>k<88><8B>f<D2>
  • <E2><F3>ƫ<EB><ED><B5><F3><D7><EA><F3><B0>

3. B<><42><93><84><D7><ED><B0><E9><DF>

temporal function train(dataset) {
    t[0]: model = initialize_weights()
    t[1..n]: model = gradient_step(model[t-1], batch[t])
    @converge_when: loss[t] - loss[t-1] < epsilon
}
  • <B6>K n<><6E>
  • <CE>_a<F6>n<EA><D5>$<24>
  • <BF><A4><E0><C8><E9><D9><EB><C7><D0>ð

4. <20><><E1><BF><D7><ED><B0><E9><DF>

meta function optimize_function(f: Function) {
    ast = parse(f)
    optimized_ast = apply_transformations(ast, [
        dead_code_elimination,
        loop_fusion,
        vectorization
    ])
    return compile(optimized_ast)
}
  • <B3><FC><C9>n<EA><D5>h<>i
  • ASTn<F4><A5><CD>\
  • <9F>LBni܄<EFBFBD>i

5. <20><>9o<39><6F>˺<AB>

  • ѿ<FC><F3><D9><FC><B9><EFBFBD>i
  • f<D2>k<88><8B>9<84>
  • <EA>Մj<B3><FC><C9> <09>

6. AIQOS<4F><53><AB><FC>

  • <C7><FC><BF><D5><ED><FC><><C3B9><B1><B8><E5><FC><EA>: <20><><D7><ED>gojO<6A><4F><C7><FC>X<9D><58>k<C2>eO
  • <8E>d<16><><E1><E2>: <20><>ƭ<F3><C6AD>/<2F><><EF><FC><AD>/#<23><18>
  • <BA><87><84><EA><BD><FC><B9><A1>: <0A><>'<27>nW_<57><5F><EA><BD>M
  • AIy<16><><B7><B9><C6><E0><B3>: sys_infer, sys_pattern_match, sys_probabilistic_choice

<C7><E2>n<9F>L

cd prototype

# <20>,<2C>j<EFBFBD><6A><EFBFBD><EFBFBD>h<EFBFBD>L<EFBFBD><4C><EFBFBD><EFBFBD>
cargo run

# <20><>9o<39><6F><EFBFBD><EFBFBD>
cargo run --example self_improve_demo

# <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
cargo run --example probabilistic_demo

# B<><42><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
cargo run --example temporal_demo

# <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
cargo run --example meta_demo

# AIQOS<4F><53><EFBFBD><EFBFBD>
cargo run --example os_kernel_demo

<A2><FC><AD>Ư<C1><E3>

synaptic/
 src/
    ast.rs              # <20>aˇ(n<><6E>
    parser.rs           # <20><><D1><FC><B5><FC>
    graph.rs            # <08><><97><B0><E9>
    executor.rs         # <20>L<9F><4C><A8><F3>
    probabilistic.rs    # <20><><BA><87><84><D7><ED><B0><E9><DF>
    temporal.rs         # B<><42><93><84><D7><ED><B0><E9><DF>
    meta.rs            # <20><><E1><BF><D7><ED><B0><E9><DF>
    self_improve.rs    # <20><>9o<39><6F><A8><F3>
    os_kernel.rs       # AIQOS<4F><53><AB><FC>
 examples/              # _<>n<FD><6E>

-<08>G

1. AIա<49><D5A1><FC>

  • <BA><93>n<06><><E3>' < AIn<49>\<5C><>
  • :<3A>j<84>X<9D><58>h<C2><68><E1><BF><C7>
  • ѿ<FC><F3><8D>Xk<EFBFBD>iU<>_<8C>

2. <20><><A3><EFBFBD><84><D7><ED><B0><E9><DF>

# <20><>Q}<7D><>	
for i in range(10):
    result.append(process(i))

# AIQ<08><>	  
result = parallel_map(process, range(10))

3. <20><><18><><F0><84><B7><B9>

  • <E1><BF><C7><FC><BF>L<EFBFBD><9E><CB> kD<44>
  • <9F>LBn<EA><F1><EFBFBD>i
  • AIk<88><8B><EA><F1>9o

4. &'nͤƣֵ<C6A3><D6B5><DD>

  • &<17>LL<4C>թ<C7><D5A9>
  • !<21>Lo:<3A>k<07>
  • <C7><FC><BF><F6>nY<6E><1C>

en<65>'

  1. <D5><EB>_<FD><D1><FC><B5><FC>: <20>hjSynaptic<69><63><EFBFBD><9E><D1><FC>n<FC><6E>

  2. JIT<B3><F3>Ѥ<E9>: <20>LB<4C>ik<><6B><88>թ<D1><D5A9><FC><DE>

  3. c<>L: <20>鹿<AF><E9B9BF><FC>gn&<17>L

  4. b<: <20><><D7><ED><B0>nc<6E>'npf<70><

  5. <CF><FC>ɦ<A7><A2>q: AI(<28><><C1>hn#:

<EE>

<EFBFBD>B<84>kAIL<49><4C>n<AB><6E>ɒ<FC>hk<06>W<01><>n<93>ejWk2W<>Q<9A><51><8B><B7><B9><C6><E0><92>W~Y]nB<6E>g<B9><67><B3>o<C9><6F>ko<06> <0A>gYLAIkhcfo<66>ijbkjcfD<66>gW<67>F


* AILD<7F>YD<59>n<82><6E>zY<7A>

  • S<8C>L<BA><93>hAILq2Y<>exn,<2C>igY