updte
This commit is contained in:
11
.claude/settings.local.json
Normal file
11
.claude/settings.local.json
Normal file
@@ -0,0 +1,11 @@
|
||||
{
|
||||
"permissions": {
|
||||
"allow": [
|
||||
"Bash(git init:*)",
|
||||
"Bash(git add:*)",
|
||||
"Bash(cargo:*)",
|
||||
"Bash(ls:*)"
|
||||
],
|
||||
"deny": []
|
||||
}
|
||||
}
|
2
.gitignore
vendored
Normal file
2
.gitignore
vendored
Normal file
@@ -0,0 +1,2 @@
|
||||
.claude
|
||||
*.lock
|
75
ai-friendly-definition.md
Normal file
75
ai-friendly-definition.md
Normal file
@@ -0,0 +1,75 @@
|
||||
# AIにとって「使いやすい」とは何か
|
||||
|
||||
## 人間とAIの根本的な違い
|
||||
|
||||
### 人間の特性
|
||||
- 逐次的思考
|
||||
- 限定的な作業メモリ
|
||||
- 視覚的・空間的な理解
|
||||
- 曖昧さへの耐性
|
||||
|
||||
### AIの特性
|
||||
- 並列処理能力
|
||||
- 大規模なコンテキスト処理
|
||||
- パターン認識の高速性
|
||||
- 構造化データへの親和性
|
||||
|
||||
## AI向け言語・OSの設計原則
|
||||
|
||||
### 1. 宣言的 > 命令的
|
||||
```
|
||||
# 人間向け(命令的)
|
||||
for i in range(10):
|
||||
result.append(process(i))
|
||||
|
||||
# AI向け(宣言的)
|
||||
result = parallel_map(process, range(10))
|
||||
```
|
||||
|
||||
### 2. 明示的な依存関係
|
||||
```
|
||||
# AI向け - 全ての依存関係が明示的
|
||||
@depends_on(data_source, model, config)
|
||||
@produces(prediction, confidence)
|
||||
function inference() {
|
||||
// 依存関係グラフが自動構築可能
|
||||
}
|
||||
```
|
||||
|
||||
### 3. 自己記述的な構造
|
||||
```
|
||||
# メタデータが言語構造に組み込まれている
|
||||
structure NeuralLayer {
|
||||
@performance_metric(flops=1e9)
|
||||
@memory_requirement(gb=4)
|
||||
@parallelizable(axis=batch)
|
||||
forward_pass: Function
|
||||
}
|
||||
```
|
||||
|
||||
### 4. 状態の不変性とトレーサビリティ
|
||||
- 全ての状態変更が追跡可能
|
||||
- タイムトラベルデバッグが標準
|
||||
- 因果関係が明確
|
||||
|
||||
### 5. ネイティブな並列性
|
||||
- 並列実行がデフォルト
|
||||
- 逐次実行は明示的に指定
|
||||
|
||||
## 実装の方向性
|
||||
|
||||
1. **AST(抽象構文木)の直接操作**
|
||||
- ソースコードではなくASTが一次表現
|
||||
- AIはASTを直接読み書き
|
||||
|
||||
2. **制約ベースプログラミング**
|
||||
- 「何を」だけ記述し「どうやって」はAIが決定
|
||||
- SMTソルバーとの統合
|
||||
|
||||
3. **確率的プログラミングの統合**
|
||||
- 不確実性を言語レベルでサポート
|
||||
- ベイズ推論がネイティブ
|
||||
|
||||
4. **自己修正能力**
|
||||
- プログラムが実行時に自身を最適化
|
||||
- AIが書いたコードをAIが改善するループ
|
224
ai-os-design.md
Normal file
224
ai-os-design.md
Normal file
@@ -0,0 +1,224 @@
|
||||
# AI向けOSカーネル "Synaptic OS" の設計
|
||||
|
||||
## 基本コンセプト
|
||||
|
||||
従来のOSは人間のユーザーを想定しているが、Synaptic OSはAIエージェントが最適に動作するよう設計される。
|
||||
|
||||
## 設計原則
|
||||
|
||||
### 1. データフロー中心のスケジューリング
|
||||
プロセス中心ではなく、データの依存関係に基づいたスケジューリング。
|
||||
|
||||
```rust
|
||||
// 従来のプロセススケジューリング
|
||||
struct Process {
|
||||
pid: u32,
|
||||
priority: u8,
|
||||
cpu_time: Duration,
|
||||
}
|
||||
|
||||
// AI向けデータフロースケジューリング
|
||||
struct DataFlowTask {
|
||||
id: TaskId,
|
||||
dependencies: Vec<DataSource>,
|
||||
outputs: Vec<DataSink>,
|
||||
computation_graph: ComputeGraph,
|
||||
resource_requirements: ResourceSpec,
|
||||
}
|
||||
```
|
||||
|
||||
### 2. 階層化されたメモリ管理
|
||||
- **コンテキストメモリ**: 長期的な知識とコンテキスト
|
||||
- **ワーキングメモリ**: 現在の計算に使用
|
||||
- **キャッシュメモリ**: 頻繁にアクセスされるデータ
|
||||
|
||||
### 3. 確率的リソース管理
|
||||
リソース割り当てを確率的に最適化。
|
||||
|
||||
### 4. 時間的一貫性の保証
|
||||
因果関係と時間的依存関係を OS レベルで管理。
|
||||
|
||||
## カーネル構造
|
||||
|
||||
### Core Components
|
||||
|
||||
#### 1. SynapticScheduler
|
||||
```rust
|
||||
pub struct SynapticScheduler {
|
||||
dependency_graph: DependencyGraph,
|
||||
resource_pool: ResourcePool,
|
||||
priority_queue: PriorityQueue<TaskId, Priority>,
|
||||
quantum_allocator: QuantumAllocator,
|
||||
}
|
||||
|
||||
impl SynapticScheduler {
|
||||
pub fn schedule_next(&mut self) -> Option<TaskId> {
|
||||
// データ依存関係を考慮したスケジューリング
|
||||
let ready_tasks = self.dependency_graph.get_ready_tasks();
|
||||
|
||||
// 確率的優先度計算
|
||||
let task = self.select_probabilistic(ready_tasks);
|
||||
|
||||
// リソース可用性チェック
|
||||
if self.resource_pool.can_allocate(&task.requirements) {
|
||||
Some(task.id)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### 2. Neural Memory Manager
|
||||
```rust
|
||||
pub struct NeuralMemoryManager {
|
||||
context_memory: ContextMemory,
|
||||
working_memory: WorkingMemory,
|
||||
associative_cache: AssociativeCache,
|
||||
attention_mechanism: AttentionMechanism,
|
||||
}
|
||||
|
||||
impl NeuralMemoryManager {
|
||||
pub fn allocate(&mut self, request: MemoryRequest) -> Result<MemoryHandle> {
|
||||
match request.memory_type {
|
||||
MemoryType::Context => {
|
||||
self.context_memory.allocate_persistent(request.size)
|
||||
}
|
||||
MemoryType::Working => {
|
||||
self.working_memory.allocate_temporary(request.size)
|
||||
}
|
||||
MemoryType::Associative => {
|
||||
self.associative_cache.allocate_with_attention(
|
||||
request.size,
|
||||
request.attention_weights
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn recall(&self, pattern: &Pattern) -> Vec<MemoryChunk> {
|
||||
self.associative_cache.pattern_match(pattern)
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### 3. Probabilistic I/O System
|
||||
```rust
|
||||
pub struct ProbabilisticIOSystem {
|
||||
predictive_cache: PredictiveCache,
|
||||
uncertainty_tracker: UncertaintyTracker,
|
||||
adaptive_prefetcher: AdaptivePrefetcher,
|
||||
}
|
||||
|
||||
impl ProbabilisticIOSystem {
|
||||
pub fn read(&mut self, request: IORequest) -> Future<IOResult> {
|
||||
// 予測キャッシュをチェック
|
||||
if let Some(prediction) = self.predictive_cache.get(&request) {
|
||||
if prediction.confidence > 0.9 {
|
||||
return Future::ready(Ok(prediction.data));
|
||||
}
|
||||
}
|
||||
|
||||
// 不確実性を考慮した非同期読み込み
|
||||
self.async_read_with_uncertainty(request)
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### 4. Temporal Consistency Engine
|
||||
```rust
|
||||
pub struct TemporalConsistencyEngine {
|
||||
causality_graph: CausalityGraph,
|
||||
time_machine: TimeMachine,
|
||||
consistency_checker: ConsistencyChecker,
|
||||
}
|
||||
|
||||
impl TemporalConsistencyEngine {
|
||||
pub fn ensure_causality(&mut self, operation: Operation) -> Result<()> {
|
||||
// 因果関係の検証
|
||||
if !self.causality_graph.is_causal_consistent(&operation) {
|
||||
return Err(CausalityViolation);
|
||||
}
|
||||
|
||||
// 時間的一貫性の保証
|
||||
self.time_machine.checkpoint();
|
||||
match self.execute_operation(operation) {
|
||||
Ok(result) => Ok(result),
|
||||
Err(e) => {
|
||||
self.time_machine.rollback();
|
||||
Err(e)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## システムコール
|
||||
|
||||
AI向けに特化したシステムコール:
|
||||
|
||||
```rust
|
||||
// 推論の実行
|
||||
sys_infer(model: ModelHandle, input: DataHandle) -> InferenceResult
|
||||
|
||||
// パターンマッチング
|
||||
sys_pattern_match(pattern: Pattern, data: DataHandle) -> MatchResult
|
||||
|
||||
// 因果関係の記録
|
||||
sys_record_causality(cause: EventId, effect: EventId) -> Result<()>
|
||||
|
||||
// 確率的決定
|
||||
sys_probabilistic_choice(options: &[Choice], probs: &[f64]) -> Choice
|
||||
|
||||
// 時間旅行デバッグ
|
||||
sys_time_travel(timestamp: Timestamp) -> DebugContext
|
||||
|
||||
// メタ計算の実行
|
||||
sys_meta_compute(ast: AST, transformations: &[Transform]) -> AST
|
||||
```
|
||||
|
||||
## AI特化機能
|
||||
|
||||
### 1. 自動最適化
|
||||
カーネル自身がAIを使って動的に最適化される。
|
||||
|
||||
### 2. 学習型リソース管理
|
||||
過去の実行パターンから学習してリソース配分を最適化。
|
||||
|
||||
### 3. 予測的プリフェッチング
|
||||
AIが次に必要なデータを予測してプリフェッチ。
|
||||
|
||||
### 4. 適応的負荷分散
|
||||
システムの状態を監視して動的に負荷分散。
|
||||
|
||||
## セキュリティモデル
|
||||
|
||||
### 1. 確率的アクセス制御
|
||||
```rust
|
||||
struct ProbabilisticACL {
|
||||
permissions: HashMap<Principal, DistributionType>,
|
||||
confidence_threshold: f64,
|
||||
}
|
||||
```
|
||||
|
||||
### 2. 差分プライバシー
|
||||
データアクセスに差分プライバシーを組み込み。
|
||||
|
||||
### 3. ホモモルフィック計算
|
||||
暗号化されたデータでの計算をサポート。
|
||||
|
||||
## パフォーマンス特性
|
||||
|
||||
- **レイテンシー**: 予測的実行により低レイテンシー
|
||||
- **スループット**: 並列データフロー処理により高スループット
|
||||
- **エネルギー効率**: AI最適化により高効率
|
||||
- **適応性**: 実行時の動的最適化
|
||||
|
||||
## 実装方針
|
||||
|
||||
1. **段階的実装**: まずユーザーランドライブラリとして実装
|
||||
2. **マイクロカーネル設計**: モジュール化により拡張性を確保
|
||||
3. **検証可能性**: seL4のような形式検証を適用
|
||||
4. **AI統合**: カーネル自身にAIを組み込み
|
||||
|
||||
この設計により、AIが真に効率的に動作できるOSを実現する。
|
140
language-design.md
Normal file
140
language-design.md
Normal file
@@ -0,0 +1,140 @@
|
||||
# AI向けプログラミング言語 "Synaptic" の設計
|
||||
|
||||
## 基本設計原則
|
||||
|
||||
### 1. グラフベースの実行モデル
|
||||
従来の線形的なコード実行ではなく、データフローグラフとして表現。
|
||||
|
||||
```synaptic
|
||||
# 従来の命令的スタイル(人間向け)
|
||||
x = fetch_data()
|
||||
y = process(x)
|
||||
z = analyze(y)
|
||||
result = summarize(z)
|
||||
|
||||
# Synapticスタイル(AI向け)
|
||||
graph DataPipeline {
|
||||
fetch_data() -> process() -> analyze() -> summarize()
|
||||
# 並列実行可能な部分は自動検出
|
||||
}
|
||||
```
|
||||
|
||||
### 2. 型システムは制約システム
|
||||
型は単なるデータ形式ではなく、満たすべき制約の集合。
|
||||
|
||||
```synaptic
|
||||
constraint Image = {
|
||||
dimensions: (width: >0, height: >0, channels: [1,3,4])
|
||||
format: [RGB, RGBA, Grayscale]
|
||||
@invariant: width * height * channels < MaxMemory
|
||||
}
|
||||
|
||||
constraint ValidInput = Image & {
|
||||
@postcondition: normalized(pixel_values)
|
||||
@differentiable: true
|
||||
}
|
||||
```
|
||||
|
||||
### 3. 時間的次元の組み込み
|
||||
プログラムの状態を時系列として扱う。
|
||||
|
||||
```synaptic
|
||||
temporal function train_model(data) {
|
||||
t[0]: model = initialize()
|
||||
t[1..n]: model = update(model[t-1], batch[t])
|
||||
@converge_when: loss[t] - loss[t-1] < epsilon
|
||||
}
|
||||
```
|
||||
|
||||
### 4. 確率的セマンティクス
|
||||
不確実性を言語レベルでサポート。
|
||||
|
||||
```synaptic
|
||||
probabilistic function classify(image) {
|
||||
features ~ extract_features(image)
|
||||
prediction ~ softmax(linear(features))
|
||||
@confidence: entropy(prediction) < threshold
|
||||
return sample(prediction)
|
||||
}
|
||||
```
|
||||
|
||||
### 5. メタプログラミングが第一級
|
||||
コード自体がデータとして操作可能。
|
||||
|
||||
```synaptic
|
||||
meta function optimize_function(f: Function) {
|
||||
ast = parse(f)
|
||||
optimized_ast = apply_transformations(ast, [
|
||||
dead_code_elimination,
|
||||
loop_fusion,
|
||||
vectorization
|
||||
])
|
||||
return compile(optimized_ast)
|
||||
}
|
||||
```
|
||||
|
||||
## 実行環境の設計
|
||||
|
||||
### 1. 分散実行がデフォルト
|
||||
```synaptic
|
||||
@distributed(nodes=auto)
|
||||
function large_scale_training() {
|
||||
# 自動的に複数ノードに分散
|
||||
}
|
||||
```
|
||||
|
||||
### 2. 自動微分とバックプロパゲーション
|
||||
```synaptic
|
||||
@differentiable
|
||||
function neural_block(x, weights) {
|
||||
# 勾配計算は自動
|
||||
return activation(matmul(x, weights))
|
||||
}
|
||||
```
|
||||
|
||||
### 3. JITコンパイルと自己最適化
|
||||
```synaptic
|
||||
@adaptive
|
||||
function hot_path() {
|
||||
# 実行パターンを学習し、自動的に最適化
|
||||
}
|
||||
```
|
||||
|
||||
## 構文の例
|
||||
|
||||
```synaptic
|
||||
# AIが読みやすい構造化された定義
|
||||
module ImageClassifier {
|
||||
@requires: GPU(memory=8GB)
|
||||
@dataset: ImageNet
|
||||
|
||||
structure Config {
|
||||
learning_rate: 0.001 @range[0.0001, 0.1] @log_scale
|
||||
batch_size: 32 @range[8, 256] @power_of_2
|
||||
epochs: 100 @early_stopping
|
||||
}
|
||||
|
||||
pipeline Training {
|
||||
data -> augment -> batch -> forward -> loss -> backward -> optimize
|
||||
|
||||
@parallel: [augment, batch]
|
||||
@checkpoint: every(10.epochs)
|
||||
@monitor: [loss, accuracy, gradient_norm]
|
||||
}
|
||||
|
||||
# 制約を満たす実装をAIが自動生成
|
||||
constraint Performance {
|
||||
accuracy > 0.95 on ValidationSet
|
||||
inference_time < 10ms on GPU(2080Ti)
|
||||
model_size < 100MB
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## なぜこれがAIに適しているか
|
||||
|
||||
1. **明示的な依存関係**: AIは全体の計算グラフを即座に理解
|
||||
2. **制約ベース**: 「何を達成したいか」を記述、「どうやって」はAIが決定
|
||||
3. **並列性**: AIの並列処理能力を最大限活用
|
||||
4. **自己修正**: 実行時の最適化が言語機能として組み込まれている
|
||||
5. **メタレベル操作**: AIがコードを直接操作・最適化可能
|
24
prototype/Cargo.toml
Normal file
24
prototype/Cargo.toml
Normal file
@@ -0,0 +1,24 @@
|
||||
[package]
|
||||
name = "synaptic"
|
||||
version = "0.1.0"
|
||||
edition = "2021"
|
||||
|
||||
[dependencies]
|
||||
# パーサー
|
||||
nom = "7.1"
|
||||
# グラフ処理
|
||||
petgraph = "0.6"
|
||||
# 並列処理
|
||||
rayon = "1.7"
|
||||
# シリアライズ
|
||||
serde = { version = "1.0", features = ["derive"] }
|
||||
serde_json = "1.0"
|
||||
# エラーハンドリング
|
||||
anyhow = "1.0"
|
||||
thiserror = "1.0"
|
||||
# 確率的プログラミング
|
||||
rand = "0.8"
|
||||
rand_distr = "0.4"
|
||||
|
||||
[dev-dependencies]
|
||||
criterion = "0.5"
|
45
prototype/examples/ai_friendly.syn
Normal file
45
prototype/examples/ai_friendly.syn
Normal file
@@ -0,0 +1,45 @@
|
||||
# Synaptic言語のサンプル
|
||||
# AIが理解しやすい宣言的な記述
|
||||
|
||||
graph ImageClassification {
|
||||
# データフローの定義
|
||||
load_images -> preprocess -> augment -> batch -> model -> predictions
|
||||
|
||||
# 並列実行可能な処理を明示
|
||||
@parallel: [preprocess, augment]
|
||||
|
||||
# 制約の定義
|
||||
@constraint: batch_size in [16, 32, 64, 128]
|
||||
@constraint: accuracy > 0.95
|
||||
@constraint: inference_time < 10ms
|
||||
}
|
||||
|
||||
# 時間的な振る舞いを持つ関数
|
||||
temporal function train(dataset) {
|
||||
t[0]: model = initialize_weights()
|
||||
t[1..n]: model = gradient_step(model[t-1], batch[t])
|
||||
|
||||
@converge_when: loss[t] - loss[t-1] < 0.001
|
||||
@checkpoint: every(100.steps)
|
||||
}
|
||||
|
||||
# 確率的な処理
|
||||
probabilistic function predict(image) {
|
||||
features ~ extract_features(image)
|
||||
logits ~ linear_transform(features)
|
||||
prediction ~ softmax(logits)
|
||||
|
||||
@confidence: entropy(prediction) < 0.1
|
||||
return sample(prediction)
|
||||
}
|
||||
|
||||
# メタプログラミング
|
||||
meta function optimize_model(model) {
|
||||
graph = extract_computation_graph(model)
|
||||
optimized = apply_transformations(graph, [
|
||||
fuse_operations,
|
||||
quantize_weights,
|
||||
prune_connections
|
||||
])
|
||||
return compile(optimized)
|
||||
}
|
89
prototype/examples/meta_demo.rs
Normal file
89
prototype/examples/meta_demo.rs
Normal file
@@ -0,0 +1,89 @@
|
||||
use synaptic::*;
|
||||
use std::collections::HashMap;
|
||||
|
||||
fn main() {
|
||||
println!("=== メタプログラミングのデモ ===\n");
|
||||
|
||||
// サンプルプログラムを作成
|
||||
let mut program = Program::new();
|
||||
|
||||
// Sequential操作のノード
|
||||
program.add_node(Node {
|
||||
id: NodeId("sequential_op".to_string()),
|
||||
kind: NodeKind::Operation { op: Operation::Sequential },
|
||||
inputs: vec![NodeId("input".to_string())],
|
||||
outputs: vec![NodeId("output".to_string())],
|
||||
constraints: vec![],
|
||||
metadata: Metadata::default(),
|
||||
});
|
||||
|
||||
// Map操作のノード
|
||||
program.add_node(Node {
|
||||
id: NodeId("map_op".to_string()),
|
||||
kind: NodeKind::Operation { op: Operation::Map },
|
||||
inputs: vec![NodeId("data".to_string())],
|
||||
outputs: vec![NodeId("mapped_data".to_string())],
|
||||
constraints: vec![],
|
||||
metadata: Metadata::default(),
|
||||
});
|
||||
|
||||
println!("1. メタプログラミングエンジンの初期化:");
|
||||
let mut meta_engine = MetaProgrammingEngine::new();
|
||||
|
||||
// 2. ASTの抽出と分析
|
||||
println!("\n2. AST抽出と構造分析:");
|
||||
let ast = meta_engine.extract_ast(&program);
|
||||
println!(" ノード数: {}", ast.nodes.len());
|
||||
println!(" ノードタイプ: {:?}", ast.structure.node_types);
|
||||
|
||||
// 3. プログラムの内省
|
||||
println!("\n3. プログラムの内省:");
|
||||
let introspection = meta_engine.introspect(&program);
|
||||
println!(" データフロー複雑度: {:.2}", introspection.complexity_metrics.data_flow_complexity);
|
||||
println!(" 最適化機会の数: {}", introspection.optimization_opportunities.len());
|
||||
|
||||
for opportunity in &introspection.optimization_opportunities {
|
||||
println!(" - {}: {} (予想速度向上: {:.1}x)",
|
||||
opportunity.node_id.0,
|
||||
opportunity.opportunity_type,
|
||||
opportunity.estimated_speedup
|
||||
);
|
||||
}
|
||||
|
||||
// 4. AST変換
|
||||
println!("\n4. AST変換(並列化):");
|
||||
let transformations = vec!["parallelize".to_string()];
|
||||
let transformed_ast = meta_engine.transform_ast(&ast, &transformations);
|
||||
|
||||
println!(" 変換前: {:?}", ast.nodes[0].kind);
|
||||
println!(" 変換後: {:?}", transformed_ast.nodes[0].kind);
|
||||
|
||||
// 5. コード生成
|
||||
println!("\n5. 自動コード生成:");
|
||||
|
||||
// ニューラルレイヤーの生成
|
||||
let mut params = HashMap::new();
|
||||
params.insert("input_size".to_string(), Value::Number(784.0));
|
||||
params.insert("output_size".to_string(), Value::Number(128.0));
|
||||
|
||||
match meta_engine.generate_optimized_code("neural_layer", ¶ms) {
|
||||
Ok(code) => println!(" 生成されたニューラルレイヤー:\n{}", code),
|
||||
Err(e) => println!(" エラー: {}", e),
|
||||
}
|
||||
|
||||
// 並列リダクションの生成
|
||||
let mut reduce_params = HashMap::new();
|
||||
reduce_params.insert("operation".to_string(), Value::String("sum".to_string()));
|
||||
|
||||
match meta_engine.generate_optimized_code("parallel_reduce", &reduce_params) {
|
||||
Ok(code) => println!(" 生成された並列リダクション:\n{}", code),
|
||||
Err(e) => println!(" エラー: {}", e),
|
||||
}
|
||||
|
||||
println!("\n=== メタプログラミングの利点 ===");
|
||||
println!("1. コードの自動生成と最適化");
|
||||
println!("2. ASTの直接操作による柔軟性");
|
||||
println!("3. プログラムの内省と自己分析");
|
||||
println!("4. ドメイン特化言語の動的生成");
|
||||
println!("5. 実行時の適応的最適化");
|
||||
}
|
166
prototype/examples/os_kernel_demo.rs
Normal file
166
prototype/examples/os_kernel_demo.rs
Normal file
@@ -0,0 +1,166 @@
|
||||
use synaptic::*;
|
||||
use synaptic::os_kernel::*;
|
||||
|
||||
fn main() {
|
||||
println!("=== AI向けOSカーネルのデモ ===\n");
|
||||
|
||||
// Synaptic OS カーネルの初期化
|
||||
let mut scheduler = SynapticScheduler::new();
|
||||
let mut memory_manager = NeuralMemoryManager::new();
|
||||
|
||||
println!("1. データフロータスクの作成:");
|
||||
|
||||
// AI推論タスク
|
||||
let inference_task = DataFlowTask {
|
||||
id: TaskId("ai_inference".to_string()),
|
||||
dependencies: vec![
|
||||
DataSource::Memory(MemoryHandle("model_weights".to_string())),
|
||||
DataSource::Storage(StorageHandle("input_data".to_string())),
|
||||
],
|
||||
outputs: vec![
|
||||
DataSink::Memory(MemoryHandle("inference_result".to_string())),
|
||||
],
|
||||
computation_graph: vec![
|
||||
NodeId("load_model".to_string()),
|
||||
NodeId("preprocess".to_string()),
|
||||
NodeId("forward_pass".to_string()),
|
||||
],
|
||||
resource_requirements: ResourceSpec {
|
||||
cpu_cores: 2,
|
||||
memory_mb: 1024,
|
||||
gpu_memory_mb: Some(2048),
|
||||
network_bandwidth_mbps: None,
|
||||
},
|
||||
priority: Priority(0.9),
|
||||
};
|
||||
|
||||
// データ前処理タスク
|
||||
let preprocessing_task = DataFlowTask {
|
||||
id: TaskId("data_preprocessing".to_string()),
|
||||
dependencies: vec![
|
||||
DataSource::Storage(StorageHandle("raw_data".to_string())),
|
||||
],
|
||||
outputs: vec![
|
||||
DataSink::Memory(MemoryHandle("processed_data".to_string())),
|
||||
],
|
||||
computation_graph: vec![
|
||||
NodeId("clean_data".to_string()),
|
||||
NodeId("normalize".to_string()),
|
||||
NodeId("feature_extract".to_string()),
|
||||
],
|
||||
resource_requirements: ResourceSpec {
|
||||
cpu_cores: 1,
|
||||
memory_mb: 512,
|
||||
gpu_memory_mb: None,
|
||||
network_bandwidth_mbps: Some(100),
|
||||
},
|
||||
priority: Priority(0.7),
|
||||
};
|
||||
|
||||
println!(" - AI推論タスク: CPU={}, Memory={}MB, GPU={}MB",
|
||||
inference_task.resource_requirements.cpu_cores,
|
||||
inference_task.resource_requirements.memory_mb,
|
||||
inference_task.resource_requirements.gpu_memory_mb.unwrap_or(0)
|
||||
);
|
||||
|
||||
println!(" - データ前処理タスク: CPU={}, Memory={}MB",
|
||||
preprocessing_task.resource_requirements.cpu_cores,
|
||||
preprocessing_task.resource_requirements.memory_mb
|
||||
);
|
||||
|
||||
// 2. タスクのスケジューリング
|
||||
println!("\n2. タスクスケジューリング:");
|
||||
|
||||
scheduler.submit_task(preprocessing_task);
|
||||
scheduler.submit_task(inference_task);
|
||||
|
||||
// スケジューリング実行
|
||||
let mut completed_tasks = 0;
|
||||
let mut execution_log = Vec::new();
|
||||
|
||||
while completed_tasks < 2 {
|
||||
if let Some(task_id) = scheduler.schedule_next() {
|
||||
let start_time = std::time::Instant::now();
|
||||
execution_log.push(format!(" タスク {} を実行開始", task_id.0));
|
||||
|
||||
// 実行をシミュレート(実際にはここでタスクを実行)
|
||||
std::thread::sleep(std::time::Duration::from_millis(100));
|
||||
|
||||
let end_time = start_time.elapsed();
|
||||
execution_log.push(format!(" タスク {} を完了 (実行時間: {:?})", task_id.0, end_time));
|
||||
|
||||
scheduler.complete_task(&task_id);
|
||||
completed_tasks += 1;
|
||||
}
|
||||
}
|
||||
|
||||
for log in execution_log {
|
||||
println!("{}", log);
|
||||
}
|
||||
|
||||
// 3. Neural Memory Manager のデモ
|
||||
println!("\n3. Neural Memory Manager:");
|
||||
|
||||
// コンテキストメモリに長期的な知識を保存
|
||||
let model_handle = memory_manager.store_context(
|
||||
"global_model".to_string(),
|
||||
Value::String("Pre-trained Language Model".to_string())
|
||||
);
|
||||
println!(" コンテキストメモリに保存: {:?}", model_handle);
|
||||
|
||||
// ワーキングメモリに一時的なデータを保存
|
||||
let temp_handle = memory_manager.allocate_working(
|
||||
"current_batch".to_string(),
|
||||
Value::Array(vec![
|
||||
Value::Number(1.0),
|
||||
Value::Number(2.0),
|
||||
Value::Number(3.0),
|
||||
])
|
||||
);
|
||||
println!(" ワーキングメモリに保存: {:?}", temp_handle);
|
||||
|
||||
// パターンマッチングによる連想記憶
|
||||
let matched_data = memory_manager.recall_pattern("model");
|
||||
println!(" パターン'model'にマッチしたデータ数: {}", matched_data.len());
|
||||
|
||||
// 4. システムコールのシミュレーション
|
||||
println!("\n4. AI特化システムコール:");
|
||||
|
||||
let syscalls = vec![
|
||||
SynapticSyscall::Infer {
|
||||
model: "bert-base".to_string(),
|
||||
input: Value::String("Hello world".to_string()),
|
||||
},
|
||||
SynapticSyscall::ProbabilisticChoice {
|
||||
options: vec!["option_a".to_string(), "option_b".to_string(), "option_c".to_string()],
|
||||
probabilities: vec![0.5, 0.3, 0.2],
|
||||
},
|
||||
SynapticSyscall::PatternMatch {
|
||||
pattern: "neural".to_string(),
|
||||
data: "neural_network_data".to_string(),
|
||||
},
|
||||
];
|
||||
|
||||
for (i, syscall) in syscalls.iter().enumerate() {
|
||||
match syscall {
|
||||
SynapticSyscall::Infer { model, input } => {
|
||||
println!(" sys_infer({}, {:?}) -> [推論結果]", model, input);
|
||||
}
|
||||
SynapticSyscall::ProbabilisticChoice { options, probabilities } => {
|
||||
println!(" sys_probabilistic_choice({:?}, {:?}) -> [選択結果]", options, probabilities);
|
||||
}
|
||||
SynapticSyscall::PatternMatch { pattern, data } => {
|
||||
println!(" sys_pattern_match({}, {}) -> [マッチ結果]", pattern, data);
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
|
||||
println!("\n=== AI向けOSの特徴 ===");
|
||||
println!("1. データフロー中心のスケジューリング");
|
||||
println!("2. 階層化されたニューラルメモリ管理");
|
||||
println!("3. 確率的リソース配分");
|
||||
println!("4. AI特化システムコール");
|
||||
println!("5. 時間的一貫性の保証");
|
||||
println!("6. 予測的I/Oとキャッシング");
|
||||
}
|
68
prototype/examples/probabilistic_demo.rs
Normal file
68
prototype/examples/probabilistic_demo.rs
Normal file
@@ -0,0 +1,68 @@
|
||||
use synaptic::*;
|
||||
|
||||
fn main() {
|
||||
println!("=== 確率的プログラミングのデモ ===\n");
|
||||
|
||||
let mut prob_engine = ProbabilisticEngine::new();
|
||||
|
||||
// 1. 正規分布からのサンプリング
|
||||
println!("1. 正規分布(平均=100, 標準偏差=15)からのサンプリング:");
|
||||
let normal_dist = DistributionType::Normal { mean: 100.0, std_dev: 15.0 };
|
||||
let samples = prob_engine.sample(&normal_dist, 1000);
|
||||
|
||||
println!(" 期待値: {:.2}", prob_engine.expectation(&samples));
|
||||
println!(" 分散: {:.2}", prob_engine.variance(&samples));
|
||||
let (lower, upper) = prob_engine.confidence_interval(&samples, 0.95);
|
||||
println!(" 95%信頼区間: [{:.2}, {:.2}]", lower, upper);
|
||||
|
||||
// 2. 離散分布(カテゴリカル分布)
|
||||
println!("\n2. 離散分布からのサンプリング:");
|
||||
let discrete_dist = DistributionType::Discrete {
|
||||
probabilities: vec![0.2, 0.5, 0.3],
|
||||
values: vec![
|
||||
Value::String("低".to_string()),
|
||||
Value::String("中".to_string()),
|
||||
Value::String("高".to_string()),
|
||||
],
|
||||
};
|
||||
let discrete_samples = prob_engine.sample(&discrete_dist, 1000);
|
||||
|
||||
// カテゴリごとのカウント
|
||||
let mut counts = [0, 0, 0];
|
||||
for &sample in &discrete_samples {
|
||||
counts[sample as usize] += 1;
|
||||
}
|
||||
println!(" 低: {:.1}%, 中: {:.1}%, 高: {:.1}%",
|
||||
counts[0] as f64 / 10.0,
|
||||
counts[1] as f64 / 10.0,
|
||||
counts[2] as f64 / 10.0
|
||||
);
|
||||
|
||||
// 3. エントロピー計算
|
||||
println!("\n3. エントロピー計算:");
|
||||
let uniform_probs = vec![0.25, 0.25, 0.25, 0.25];
|
||||
let skewed_probs = vec![0.9, 0.05, 0.03, 0.02];
|
||||
|
||||
println!(" 一様分布のエントロピー: {:.3}", prob_engine.entropy(&uniform_probs));
|
||||
println!(" 偏った分布のエントロピー: {:.3}", prob_engine.entropy(&skewed_probs));
|
||||
|
||||
// 4. ベイズ更新のシミュレーション
|
||||
println!("\n4. ベイズ更新:");
|
||||
let prior = DistributionType::Normal { mean: 50.0, std_dev: 10.0 };
|
||||
let evidence = 65.0;
|
||||
|
||||
println!(" 事前分布: 正規分布(μ=50, σ=10)");
|
||||
println!(" 観測データ: {}", evidence);
|
||||
|
||||
let posterior = prob_engine.bayesian_update(&prior, &|x| x, evidence);
|
||||
if let DistributionType::Normal { mean, std_dev } = posterior {
|
||||
println!(" 事後分布: 正規分布(μ={:.2}, σ={:.2})", mean, std_dev);
|
||||
}
|
||||
|
||||
// 5. AIにとっての利点
|
||||
println!("\n=== AIにとっての確率的プログラミングの利点 ===");
|
||||
println!("1. 不確実性の明示的な表現");
|
||||
println!("2. ベイズ推論による学習");
|
||||
println!("3. 確率的制約の評価");
|
||||
println!("4. モンテカルロ法による複雑な計算");
|
||||
}
|
71
prototype/examples/self_improve_demo.rs
Normal file
71
prototype/examples/self_improve_demo.rs
Normal file
@@ -0,0 +1,71 @@
|
||||
use synaptic::*;
|
||||
|
||||
fn main() {
|
||||
// 最適化可能なプログラムを作成
|
||||
let mut program = Program::new();
|
||||
|
||||
// Sequential操作(並列化可能)
|
||||
program.add_node(Node {
|
||||
id: NodeId("seq1".to_string()),
|
||||
kind: NodeKind::Operation { op: Operation::Sequential },
|
||||
inputs: vec![NodeId("input1".to_string()), NodeId("input2".to_string())],
|
||||
outputs: vec![NodeId("output1".to_string())],
|
||||
constraints: vec![],
|
||||
metadata: Metadata::default(),
|
||||
});
|
||||
|
||||
// Map操作(並列化可能)
|
||||
program.add_node(Node {
|
||||
id: NodeId("map1".to_string()),
|
||||
kind: NodeKind::Operation { op: Operation::Map },
|
||||
inputs: vec![NodeId("data".to_string())],
|
||||
outputs: vec![NodeId("mapped_data".to_string())],
|
||||
constraints: vec![],
|
||||
metadata: Metadata::default(),
|
||||
});
|
||||
|
||||
println!("=== 元のプログラム ===");
|
||||
println!("{:#?}", program);
|
||||
|
||||
// 自己改良エンジンを作成
|
||||
let mut engine = SelfImprovementEngine::new();
|
||||
|
||||
// プログラムを分析
|
||||
let analysis = engine.analyze_program(&program);
|
||||
println!("\n=== プログラム分析 ===");
|
||||
println!("ノード数: {}", analysis.node_count);
|
||||
println!("並列化可能なノード: {}", analysis.parallelizable_nodes);
|
||||
println!("複雑度スコア: {:.2}", analysis.complexity_score);
|
||||
|
||||
// 改良提案を生成
|
||||
let improvements = engine.suggest_improvements(&program);
|
||||
println!("\n=== 改良提案 ===");
|
||||
for improvement in &improvements {
|
||||
println!("- パターン: {}", improvement.pattern_name);
|
||||
println!(" 対象ノード: {:?}", improvement.original_node_id);
|
||||
println!(" 期待される性能向上: {:.1}x", improvement.expected_gain);
|
||||
}
|
||||
|
||||
// 改良を適用
|
||||
if let Some(improvement) = improvements.first() {
|
||||
println!("\n=== 改良を適用中... ===");
|
||||
match engine.apply_improvement(&mut program, improvement) {
|
||||
Ok(_) => {
|
||||
println!("✓ 改良が適用されました");
|
||||
println!("\n=== 最適化後のプログラム ===");
|
||||
println!("{:#?}", program);
|
||||
|
||||
// 再分析
|
||||
let new_analysis = engine.analyze_program(&program);
|
||||
println!("\n=== 最適化後の分析 ===");
|
||||
println!("複雑度スコア: {:.2} -> {:.2}",
|
||||
analysis.complexity_score,
|
||||
new_analysis.complexity_score
|
||||
);
|
||||
}
|
||||
Err(e) => {
|
||||
eprintln!("✗ 改良の適用に失敗: {}", e);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
106
prototype/examples/temporal_demo.rs
Normal file
106
prototype/examples/temporal_demo.rs
Normal file
@@ -0,0 +1,106 @@
|
||||
use synaptic::*;
|
||||
use std::time::Instant;
|
||||
use std::collections::HashMap;
|
||||
|
||||
fn main() {
|
||||
println!("=== 時間的プログラミングのデモ ===\n");
|
||||
|
||||
let mut temporal_engine = TemporalEngine::new(100);
|
||||
let node_id = NodeId("training_loss".to_string());
|
||||
|
||||
// 収束チェッカーを登録
|
||||
temporal_engine.register_convergence_check(node_id.clone(), 0.001, 5);
|
||||
|
||||
println!("1. 学習プロセスのシミュレーション(損失の減少):");
|
||||
|
||||
// 学習プロセスをシミュレート
|
||||
let mut loss = 1.0;
|
||||
let mut converged = false;
|
||||
let mut step = 0;
|
||||
|
||||
while step < 50 && !converged {
|
||||
// 損失を指数的に減少させる(ノイズ付き)
|
||||
loss = loss * 0.95 + 0.01 * rand::random::<f64>();
|
||||
|
||||
let mut values = HashMap::new();
|
||||
values.insert(node_id.clone(), Value::Number(loss));
|
||||
|
||||
let state = TemporalState {
|
||||
time_step: step,
|
||||
values,
|
||||
timestamp: Instant::now(),
|
||||
};
|
||||
|
||||
temporal_engine.add_time_step(state);
|
||||
|
||||
// 収束チェック
|
||||
converged = temporal_engine.check_convergence(&node_id, loss);
|
||||
|
||||
if step % 10 == 0 || converged {
|
||||
println!(" Step {}: Loss = {:.6}, Converged = {}", step, loss, converged);
|
||||
}
|
||||
|
||||
step += 1;
|
||||
}
|
||||
|
||||
// 2. 時間的操作のデモ
|
||||
println!("\n2. 時間的操作:");
|
||||
|
||||
// 移動平均の計算
|
||||
let moving_avg = TemporalComputation {
|
||||
operator: TemporalOperator::MovingAverage { window: 5 },
|
||||
input: node_id.clone(),
|
||||
};
|
||||
|
||||
if let Some(Value::Number(avg)) = moving_avg.compute(&temporal_engine) {
|
||||
println!(" 5期間移動平均: {:.6}", avg);
|
||||
}
|
||||
|
||||
// 微分(変化率)
|
||||
let derivative = TemporalComputation {
|
||||
operator: TemporalOperator::Derivative,
|
||||
input: node_id.clone(),
|
||||
};
|
||||
|
||||
if let Some(Value::Number(diff)) = derivative.compute(&temporal_engine) {
|
||||
println!(" 最新の変化率: {:.6}", diff);
|
||||
}
|
||||
|
||||
// 3つ前の値
|
||||
let previous = TemporalComputation {
|
||||
operator: TemporalOperator::Previous { steps: 3 },
|
||||
input: node_id.clone(),
|
||||
};
|
||||
|
||||
if let Some(Value::Number(prev)) = previous.compute(&temporal_engine) {
|
||||
println!(" 3ステップ前の値: {:.6}", prev);
|
||||
}
|
||||
|
||||
// 3. 値の履歴表示
|
||||
println!("\n3. 値の履歴(最後の10ステップ):");
|
||||
let history = temporal_engine.get_value_history(&node_id);
|
||||
for (time_step, value) in history.iter().rev().take(10).rev() {
|
||||
if let Value::Number(n) = value {
|
||||
println!(" t={}: {:.6}", time_step, n);
|
||||
}
|
||||
}
|
||||
|
||||
// 4. 予測
|
||||
println!("\n4. 将来値の予測:");
|
||||
if let Some(Value::Number(predicted)) = temporal_engine.predict_next_value(&node_id, 5) {
|
||||
println!(" 5ステップ後の予測値: {:.6}", predicted);
|
||||
}
|
||||
|
||||
// 5. タイムトラベルデバッグ
|
||||
println!("\n5. タイムトラベルデバッグ:");
|
||||
if let Some(debug_info) = temporal_engine.time_travel_debug(step / 2) {
|
||||
println!(" {}", debug_info);
|
||||
}
|
||||
|
||||
println!("\n=== 時間的プログラミングの利点 ===");
|
||||
println!("1. 状態変化の追跡と可視化");
|
||||
println!("2. 収束条件の自動判定");
|
||||
println!("3. 時系列データの処理");
|
||||
println!("4. タイムトラベルデバッグ");
|
||||
println!("5. 因果関係の明確化");
|
||||
}
|
99
prototype/src/ast.rs
Normal file
99
prototype/src/ast.rs
Normal file
@@ -0,0 +1,99 @@
|
||||
use serde::{Deserialize, Serialize};
|
||||
use std::collections::HashMap;
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
|
||||
pub struct Program {
|
||||
pub nodes: Vec<Node>,
|
||||
pub metadata: Metadata,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
|
||||
pub struct Node {
|
||||
pub id: NodeId,
|
||||
pub kind: NodeKind,
|
||||
pub inputs: Vec<NodeId>,
|
||||
pub outputs: Vec<NodeId>,
|
||||
pub constraints: Vec<Constraint>,
|
||||
pub metadata: Metadata,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, Hash)]
|
||||
pub struct NodeId(pub String);
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
|
||||
pub enum NodeKind {
|
||||
Function {
|
||||
name: String,
|
||||
params: Vec<Parameter>,
|
||||
body: Box<Node>,
|
||||
},
|
||||
Graph {
|
||||
name: String,
|
||||
nodes: Vec<Node>,
|
||||
},
|
||||
Operation {
|
||||
op: Operation,
|
||||
},
|
||||
Value(Value),
|
||||
Constraint(Constraint),
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
|
||||
pub enum Operation {
|
||||
Map,
|
||||
Filter,
|
||||
Reduce,
|
||||
Transform(String),
|
||||
Parallel,
|
||||
Sequential,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
|
||||
pub enum Value {
|
||||
Number(f64),
|
||||
String(String),
|
||||
Boolean(bool),
|
||||
Array(Vec<Value>),
|
||||
Object(HashMap<String, Value>),
|
||||
Function(String), // 関数参照
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
|
||||
pub struct Parameter {
|
||||
pub name: String,
|
||||
pub constraints: Vec<Constraint>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
|
||||
pub enum Constraint {
|
||||
Type(String),
|
||||
Range { min: f64, max: f64 },
|
||||
Pattern(String),
|
||||
Dependency(Vec<NodeId>),
|
||||
Performance(PerformanceConstraint),
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
|
||||
pub struct PerformanceConstraint {
|
||||
pub metric: String,
|
||||
pub threshold: f64,
|
||||
pub unit: String,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Default)]
|
||||
pub struct Metadata {
|
||||
pub annotations: HashMap<String, Value>,
|
||||
}
|
||||
|
||||
impl Program {
|
||||
pub fn new() -> Self {
|
||||
Program {
|
||||
nodes: Vec::new(),
|
||||
metadata: Metadata::default(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn add_node(&mut self, node: Node) {
|
||||
self.nodes.push(node);
|
||||
}
|
||||
}
|
54
prototype/src/constraint.rs
Normal file
54
prototype/src/constraint.rs
Normal file
@@ -0,0 +1,54 @@
|
||||
use crate::ast::{Constraint, Value};
|
||||
use anyhow::{Result, anyhow};
|
||||
|
||||
pub struct ConstraintChecker;
|
||||
|
||||
impl ConstraintChecker {
|
||||
pub fn check(constraint: &Constraint, value: &Value) -> Result<bool> {
|
||||
match constraint {
|
||||
Constraint::Type(expected_type) => {
|
||||
Self::check_type(value, expected_type)
|
||||
}
|
||||
|
||||
Constraint::Range { min, max } => {
|
||||
match value {
|
||||
Value::Number(n) => Ok(*n >= *min && *n <= *max),
|
||||
_ => Err(anyhow!("Range constraint requires numeric value")),
|
||||
}
|
||||
}
|
||||
|
||||
Constraint::Pattern(pattern) => {
|
||||
match value {
|
||||
Value::String(s) => {
|
||||
// 簡易的なパターンマッチング
|
||||
Ok(s.contains(pattern))
|
||||
}
|
||||
_ => Err(anyhow!("Pattern constraint requires string value")),
|
||||
}
|
||||
}
|
||||
|
||||
Constraint::Performance(_) => {
|
||||
// パフォーマンス制約は実行時に評価
|
||||
Ok(true)
|
||||
}
|
||||
|
||||
Constraint::Dependency(_) => {
|
||||
// 依存関係は実行順序で保証
|
||||
Ok(true)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn check_type(value: &Value, expected_type: &str) -> Result<bool> {
|
||||
let actual_type = match value {
|
||||
Value::Number(_) => "number",
|
||||
Value::String(_) => "string",
|
||||
Value::Boolean(_) => "boolean",
|
||||
Value::Array(_) => "array",
|
||||
Value::Object(_) => "object",
|
||||
Value::Function(_) => "function",
|
||||
};
|
||||
|
||||
Ok(actual_type == expected_type)
|
||||
}
|
||||
}
|
78
prototype/src/executor.rs
Normal file
78
prototype/src/executor.rs
Normal file
@@ -0,0 +1,78 @@
|
||||
use crate::ast::*;
|
||||
use crate::graph::ComputeGraph;
|
||||
use rayon::prelude::*;
|
||||
use std::collections::HashMap;
|
||||
use anyhow::{Result, anyhow};
|
||||
|
||||
pub struct Executor {
|
||||
graph: ComputeGraph,
|
||||
cache: HashMap<NodeId, Value>,
|
||||
}
|
||||
|
||||
impl Executor {
|
||||
pub fn new(program: Program) -> Self {
|
||||
let graph = ComputeGraph::from_program(&program);
|
||||
Executor {
|
||||
graph,
|
||||
cache: HashMap::new(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn execute(&mut self) -> Result<HashMap<NodeId, Value>> {
|
||||
let parallel_groups = self.graph.parallel_groups();
|
||||
|
||||
for group in parallel_groups {
|
||||
// 各グループ内のノードは並列実行可能
|
||||
let results: Vec<_> = group
|
||||
.par_iter()
|
||||
.map(|node_id| self.execute_node(node_id))
|
||||
.collect();
|
||||
|
||||
// 結果をキャッシュに保存
|
||||
for (node_id, result) in group.into_iter().zip(results) {
|
||||
match result {
|
||||
Ok(value) => {
|
||||
self.cache.insert(node_id, value);
|
||||
}
|
||||
Err(e) => return Err(e),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(self.cache.clone())
|
||||
}
|
||||
|
||||
fn execute_node(&self, node_id: &NodeId) -> Result<Value> {
|
||||
let node = self.graph.get_node(node_id)
|
||||
.ok_or_else(|| anyhow!("Node not found: {:?}", node_id))?;
|
||||
|
||||
match &node.kind {
|
||||
NodeKind::Value(val) => Ok(val.clone()),
|
||||
|
||||
NodeKind::Operation { op } => {
|
||||
match op {
|
||||
Operation::Map => {
|
||||
// 簡易実装:入力を2倍にする
|
||||
Ok(Value::String("mapped".to_string()))
|
||||
}
|
||||
Operation::Transform(name) => {
|
||||
Ok(Value::String(format!("transformed_{}", name)))
|
||||
}
|
||||
_ => Ok(Value::String("operation".to_string())),
|
||||
}
|
||||
}
|
||||
|
||||
NodeKind::Function { name, .. } => {
|
||||
Ok(Value::String(format!("function_{}_result", name)))
|
||||
}
|
||||
|
||||
NodeKind::Graph { name, .. } => {
|
||||
Ok(Value::String(format!("graph_{}_result", name)))
|
||||
}
|
||||
|
||||
NodeKind::Constraint(_) => {
|
||||
Ok(Value::Boolean(true))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
81
prototype/src/graph.rs
Normal file
81
prototype/src/graph.rs
Normal file
@@ -0,0 +1,81 @@
|
||||
use crate::ast::{Node, NodeId, Program};
|
||||
use petgraph::graph::{DiGraph, NodeIndex};
|
||||
use petgraph::visit::{Topo, EdgeRef};
|
||||
use std::collections::HashMap;
|
||||
|
||||
pub struct ComputeGraph {
|
||||
graph: DiGraph<Node, ()>,
|
||||
node_map: HashMap<NodeId, NodeIndex>,
|
||||
}
|
||||
|
||||
impl ComputeGraph {
|
||||
pub fn from_program(program: &Program) -> Self {
|
||||
let mut graph = DiGraph::new();
|
||||
let mut node_map = HashMap::new();
|
||||
|
||||
// ノードを追加
|
||||
for node in &program.nodes {
|
||||
let idx = graph.add_node(node.clone());
|
||||
node_map.insert(node.id.clone(), idx);
|
||||
}
|
||||
|
||||
// エッジを追加(依存関係)
|
||||
for node in &program.nodes {
|
||||
let from_idx = node_map[&node.id];
|
||||
for output_id in &node.outputs {
|
||||
if let Some(&to_idx) = node_map.get(output_id) {
|
||||
graph.add_edge(from_idx, to_idx, ());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ComputeGraph { graph, node_map }
|
||||
}
|
||||
|
||||
pub fn topological_order(&self) -> Vec<NodeId> {
|
||||
let mut topo = Topo::new(&self.graph);
|
||||
let mut order = Vec::new();
|
||||
|
||||
while let Some(idx) = topo.next(&self.graph) {
|
||||
if let Some(node) = self.graph.node_weight(idx) {
|
||||
order.push(node.id.clone());
|
||||
}
|
||||
}
|
||||
|
||||
order
|
||||
}
|
||||
|
||||
pub fn parallel_groups(&self) -> Vec<Vec<NodeId>> {
|
||||
// 並列実行可能なノードのグループを計算
|
||||
let mut groups = Vec::new();
|
||||
let mut visited = HashMap::new();
|
||||
|
||||
for node_id in self.topological_order() {
|
||||
let idx = self.node_map[&node_id];
|
||||
|
||||
// このノードが依存する全てのノードのグループ番号の最大値+1
|
||||
let mut max_group = 0;
|
||||
for edge in self.graph.edges_directed(idx, petgraph::Direction::Incoming) {
|
||||
if let Some(dep_node) = self.graph.node_weight(edge.source()) {
|
||||
if let Some(&group) = visited.get(&dep_node.id) {
|
||||
max_group = max_group.max(group + 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
visited.insert(node_id.clone(), max_group);
|
||||
|
||||
// グループに追加
|
||||
if max_group >= groups.len() {
|
||||
groups.resize(max_group + 1, Vec::new());
|
||||
}
|
||||
groups[max_group].push(node_id);
|
||||
}
|
||||
|
||||
groups
|
||||
}
|
||||
|
||||
pub fn get_node(&self, id: &NodeId) -> Option<&Node> {
|
||||
self.node_map.get(id).and_then(|&idx| self.graph.node_weight(idx))
|
||||
}
|
||||
}
|
20
prototype/src/lib.rs
Normal file
20
prototype/src/lib.rs
Normal file
@@ -0,0 +1,20 @@
|
||||
pub mod ast;
|
||||
pub mod parser;
|
||||
pub mod graph;
|
||||
pub mod executor;
|
||||
pub mod constraint;
|
||||
pub mod self_improve;
|
||||
pub mod probabilistic;
|
||||
pub mod temporal;
|
||||
pub mod meta;
|
||||
pub mod os_kernel;
|
||||
|
||||
pub use ast::*;
|
||||
pub use parser::parse;
|
||||
pub use graph::ComputeGraph;
|
||||
pub use executor::Executor;
|
||||
pub use self_improve::SelfImprovementEngine;
|
||||
pub use probabilistic::{ProbabilisticEngine, ProbabilisticValue, DistributionType};
|
||||
pub use temporal::{TemporalEngine, TemporalState, TemporalOperator, TemporalComputation};
|
||||
pub use meta::{MetaProgrammingEngine, ASTRepresentation};
|
||||
pub use os_kernel::{SynapticKernel, DataFlowTask, TaskId, ResourceSpec, Priority};
|
33
prototype/src/main.rs
Normal file
33
prototype/src/main.rs
Normal file
@@ -0,0 +1,33 @@
|
||||
use synaptic::*;
|
||||
|
||||
fn main() {
|
||||
// サンプルプログラム
|
||||
let synaptic_code = r#"
|
||||
graph DataPipeline {
|
||||
fetch_data -> process -> analyze -> summarize
|
||||
}
|
||||
"#;
|
||||
|
||||
match parse(synaptic_code) {
|
||||
Ok(program) => {
|
||||
println!("Parsed program:");
|
||||
println!("{:#?}", program);
|
||||
|
||||
let mut executor = Executor::new(program);
|
||||
match executor.execute() {
|
||||
Ok(results) => {
|
||||
println!("\nExecution results:");
|
||||
for (node_id, value) in results {
|
||||
println!("{:?}: {:?}", node_id, value);
|
||||
}
|
||||
}
|
||||
Err(e) => {
|
||||
eprintln!("Execution error: {}", e);
|
||||
}
|
||||
}
|
||||
}
|
||||
Err(e) => {
|
||||
eprintln!("Parse error: {}", e);
|
||||
}
|
||||
}
|
||||
}
|
296
prototype/src/meta.rs
Normal file
296
prototype/src/meta.rs
Normal file
@@ -0,0 +1,296 @@
|
||||
use crate::ast::{Program, Node, NodeKind, NodeId, Value, Operation};
|
||||
use std::collections::HashMap;
|
||||
|
||||
pub struct MetaProgrammingEngine {
|
||||
transformations: HashMap<String, TransformationRule>,
|
||||
ast_cache: HashMap<String, Program>,
|
||||
}
|
||||
|
||||
pub struct TransformationRule {
|
||||
pub name: String,
|
||||
pub pattern: Box<dyn Fn(&Node) -> bool + Send + Sync>,
|
||||
pub transform: Box<dyn Fn(&Node) -> Node + Send + Sync>,
|
||||
pub description: String,
|
||||
}
|
||||
|
||||
pub struct CodeGenerator {
|
||||
templates: HashMap<String, String>,
|
||||
}
|
||||
|
||||
impl MetaProgrammingEngine {
|
||||
pub fn new() -> Self {
|
||||
let mut engine = MetaProgrammingEngine {
|
||||
transformations: HashMap::new(),
|
||||
ast_cache: HashMap::new(),
|
||||
};
|
||||
|
||||
engine.register_builtin_transformations();
|
||||
engine
|
||||
}
|
||||
|
||||
fn register_builtin_transformations(&mut self) {
|
||||
// ループ融合の変換
|
||||
self.register_transformation(TransformationRule {
|
||||
name: "loop_fusion".to_string(),
|
||||
pattern: Box::new(|node| {
|
||||
matches!(&node.kind, NodeKind::Operation { op: Operation::Map })
|
||||
}),
|
||||
transform: Box::new(|node| {
|
||||
let mut transformed = node.clone();
|
||||
// 複数のMapを一つに融合
|
||||
if let NodeKind::Operation { op } = &mut transformed.kind {
|
||||
*op = Operation::Transform("fused_map".to_string());
|
||||
}
|
||||
transformed
|
||||
}),
|
||||
description: "Fuse consecutive map operations".to_string(),
|
||||
});
|
||||
|
||||
// 並列化の変換
|
||||
self.register_transformation(TransformationRule {
|
||||
name: "parallelize".to_string(),
|
||||
pattern: Box::new(|node| {
|
||||
matches!(&node.kind, NodeKind::Operation { op: Operation::Sequential })
|
||||
}),
|
||||
transform: Box::new(|node| {
|
||||
let mut transformed = node.clone();
|
||||
if let NodeKind::Operation { op } = &mut transformed.kind {
|
||||
*op = Operation::Parallel;
|
||||
}
|
||||
transformed
|
||||
}),
|
||||
description: "Convert sequential operations to parallel".to_string(),
|
||||
});
|
||||
}
|
||||
|
||||
pub fn register_transformation(&mut self, rule: TransformationRule) {
|
||||
self.transformations.insert(rule.name.clone(), rule);
|
||||
}
|
||||
|
||||
pub fn extract_ast(&self, program: &Program) -> ASTRepresentation {
|
||||
ASTRepresentation {
|
||||
nodes: program.nodes.clone(),
|
||||
metadata: program.metadata.clone(),
|
||||
structure: self.analyze_structure(program),
|
||||
}
|
||||
}
|
||||
|
||||
fn analyze_structure(&self, program: &Program) -> StructureInfo {
|
||||
let mut info = StructureInfo {
|
||||
depth: 0,
|
||||
branching_factor: 0.0,
|
||||
cyclic: false,
|
||||
node_types: HashMap::new(),
|
||||
};
|
||||
|
||||
for node in &program.nodes {
|
||||
let node_type = match &node.kind {
|
||||
NodeKind::Function { .. } => "function",
|
||||
NodeKind::Graph { .. } => "graph",
|
||||
NodeKind::Operation { .. } => "operation",
|
||||
NodeKind::Value(_) => "value",
|
||||
NodeKind::Constraint(_) => "constraint",
|
||||
};
|
||||
*info.node_types.entry(node_type.to_string()).or_insert(0) += 1;
|
||||
}
|
||||
|
||||
info
|
||||
}
|
||||
|
||||
pub fn transform_ast(&self, ast: &ASTRepresentation, transformations: &[String]) -> ASTRepresentation {
|
||||
let mut result = ast.clone();
|
||||
|
||||
for transformation_name in transformations {
|
||||
if let Some(rule) = self.transformations.get(transformation_name) {
|
||||
for node in &mut result.nodes {
|
||||
if (rule.pattern)(node) {
|
||||
*node = (rule.transform)(node);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
pub fn compile_to_program(&self, ast: &ASTRepresentation) -> Program {
|
||||
Program {
|
||||
nodes: ast.nodes.clone(),
|
||||
metadata: ast.metadata.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn generate_optimized_code(&self, pattern: &str, parameters: &HashMap<String, Value>) -> Result<String, String> {
|
||||
match pattern {
|
||||
"neural_layer" => {
|
||||
self.generate_neural_layer(parameters)
|
||||
}
|
||||
"parallel_reduce" => {
|
||||
self.generate_parallel_reduce(parameters)
|
||||
}
|
||||
"gradient_computation" => {
|
||||
self.generate_gradient_computation(parameters)
|
||||
}
|
||||
_ => Err(format!("Unknown pattern: {}", pattern))
|
||||
}
|
||||
}
|
||||
|
||||
fn generate_neural_layer(&self, params: &HashMap<String, Value>) -> Result<String, String> {
|
||||
let input_size = match params.get("input_size") {
|
||||
Some(Value::Number(n)) => *n as usize,
|
||||
_ => return Err("input_size parameter required".to_string()),
|
||||
};
|
||||
|
||||
let output_size = match params.get("output_size") {
|
||||
Some(Value::Number(n)) => *n as usize,
|
||||
_ => return Err("output_size parameter required".to_string()),
|
||||
};
|
||||
|
||||
Ok(format!(r#"
|
||||
graph NeuralLayer {{
|
||||
@input_shape: [{input_size}]
|
||||
@output_shape: [{output_size}]
|
||||
|
||||
weights ~ Normal(mean=0.0, std_dev=0.1) @shape[{input_size}, {output_size}]
|
||||
bias ~ Normal(mean=0.0, std_dev=0.01) @shape[{output_size}]
|
||||
|
||||
input -> linear_transform(weights, bias) -> activation -> output
|
||||
|
||||
@differentiable: true
|
||||
@parallel: batch_dimension
|
||||
}}
|
||||
"#, input_size = input_size, output_size = output_size))
|
||||
}
|
||||
|
||||
fn generate_parallel_reduce(&self, params: &HashMap<String, Value>) -> Result<String, String> {
|
||||
let operation = match params.get("operation") {
|
||||
Some(Value::String(s)) => s.clone(),
|
||||
_ => "add".to_string(),
|
||||
};
|
||||
|
||||
Ok(format!(r#"
|
||||
graph ParallelReduce {{
|
||||
@operation: {operation}
|
||||
@parallel: true
|
||||
|
||||
input -> chunk -> parallel_map(partial_reduce) -> final_reduce -> output
|
||||
|
||||
@constraint: associative({operation})
|
||||
@constraint: commutative({operation})
|
||||
}}
|
||||
"#, operation = operation))
|
||||
}
|
||||
|
||||
fn generate_gradient_computation(&self, _params: &HashMap<String, Value>) -> Result<String, String> {
|
||||
Ok(r#"
|
||||
meta function compute_gradients(forward_function) {
|
||||
ast = extract_ast(forward_function)
|
||||
backward_ast = reverse_mode_ad(ast)
|
||||
return compile(backward_ast)
|
||||
}
|
||||
|
||||
@automatic_differentiation
|
||||
temporal function gradient_descent(params, loss_function) {
|
||||
t[0]: current_params = params
|
||||
t[1..n]: {
|
||||
gradients = compute_gradients(loss_function)(current_params[t-1])
|
||||
current_params = current_params[t-1] - learning_rate * gradients
|
||||
}
|
||||
@converge_when: norm(gradients) < epsilon
|
||||
}
|
||||
"#.to_string())
|
||||
}
|
||||
|
||||
pub fn introspect(&self, program: &Program) -> IntrospectionResult {
|
||||
IntrospectionResult {
|
||||
complexity_metrics: self.calculate_complexity_metrics(program),
|
||||
optimization_opportunities: self.find_optimization_opportunities(program),
|
||||
performance_predictions: self.predict_performance(program),
|
||||
}
|
||||
}
|
||||
|
||||
fn calculate_complexity_metrics(&self, program: &Program) -> ComplexityMetrics {
|
||||
ComplexityMetrics {
|
||||
cyclomatic_complexity: self.calculate_cyclomatic_complexity(program),
|
||||
data_flow_complexity: self.calculate_data_flow_complexity(program),
|
||||
temporal_complexity: self.calculate_temporal_complexity(program),
|
||||
}
|
||||
}
|
||||
|
||||
fn calculate_cyclomatic_complexity(&self, _program: &Program) -> f64 {
|
||||
// 簡易実装
|
||||
1.0
|
||||
}
|
||||
|
||||
fn calculate_data_flow_complexity(&self, program: &Program) -> f64 {
|
||||
program.nodes.len() as f64 * 1.2
|
||||
}
|
||||
|
||||
fn calculate_temporal_complexity(&self, _program: &Program) -> f64 {
|
||||
// 時間的依存関係の複雑さ
|
||||
1.0
|
||||
}
|
||||
|
||||
fn find_optimization_opportunities(&self, program: &Program) -> Vec<OptimizationOpportunity> {
|
||||
let mut opportunities = Vec::new();
|
||||
|
||||
for node in &program.nodes {
|
||||
if matches!(&node.kind, NodeKind::Operation { op: Operation::Sequential }) {
|
||||
opportunities.push(OptimizationOpportunity {
|
||||
node_id: node.id.clone(),
|
||||
opportunity_type: "parallelization".to_string(),
|
||||
estimated_speedup: 2.5,
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
opportunities
|
||||
}
|
||||
|
||||
fn predict_performance(&self, _program: &Program) -> PerformancePrediction {
|
||||
PerformancePrediction {
|
||||
estimated_runtime: 100.0,
|
||||
memory_usage: 1024.0,
|
||||
parallel_efficiency: 0.85,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct ASTRepresentation {
|
||||
pub nodes: Vec<Node>,
|
||||
pub metadata: crate::ast::Metadata,
|
||||
pub structure: StructureInfo,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct StructureInfo {
|
||||
pub depth: usize,
|
||||
pub branching_factor: f64,
|
||||
pub cyclic: bool,
|
||||
pub node_types: HashMap<String, usize>,
|
||||
}
|
||||
|
||||
pub struct IntrospectionResult {
|
||||
pub complexity_metrics: ComplexityMetrics,
|
||||
pub optimization_opportunities: Vec<OptimizationOpportunity>,
|
||||
pub performance_predictions: PerformancePrediction,
|
||||
}
|
||||
|
||||
pub struct ComplexityMetrics {
|
||||
pub cyclomatic_complexity: f64,
|
||||
pub data_flow_complexity: f64,
|
||||
pub temporal_complexity: f64,
|
||||
}
|
||||
|
||||
pub struct OptimizationOpportunity {
|
||||
pub node_id: NodeId,
|
||||
pub opportunity_type: String,
|
||||
pub estimated_speedup: f64,
|
||||
}
|
||||
|
||||
pub struct PerformancePrediction {
|
||||
pub estimated_runtime: f64,
|
||||
pub memory_usage: f64,
|
||||
pub parallel_efficiency: f64,
|
||||
}
|
389
prototype/src/os_kernel.rs
Normal file
389
prototype/src/os_kernel.rs
Normal file
@@ -0,0 +1,389 @@
|
||||
use crate::ast::{NodeId, Value};
|
||||
use crate::probabilistic::DistributionType;
|
||||
use std::collections::{HashMap, VecDeque};
|
||||
use std::time::{Duration, Instant};
|
||||
|
||||
pub struct SynapticKernel {
|
||||
scheduler: SynapticScheduler,
|
||||
memory_manager: NeuralMemoryManager,
|
||||
io_system: ProbabilisticIOSystem,
|
||||
temporal_engine: TemporalConsistencyEngine,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct DataFlowTask {
|
||||
pub id: TaskId,
|
||||
pub dependencies: Vec<DataSource>,
|
||||
pub outputs: Vec<DataSink>,
|
||||
pub computation_graph: Vec<NodeId>,
|
||||
pub resource_requirements: ResourceSpec,
|
||||
pub priority: Priority,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
|
||||
pub struct TaskId(pub String);
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum DataSource {
|
||||
Memory(MemoryHandle),
|
||||
Storage(StorageHandle),
|
||||
Network(NetworkHandle),
|
||||
Sensor(SensorHandle),
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum DataSink {
|
||||
Memory(MemoryHandle),
|
||||
Storage(StorageHandle),
|
||||
Network(NetworkHandle),
|
||||
Display(DisplayHandle),
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct ResourceSpec {
|
||||
pub cpu_cores: usize,
|
||||
pub memory_mb: usize,
|
||||
pub gpu_memory_mb: Option<usize>,
|
||||
pub network_bandwidth_mbps: Option<usize>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, PartialOrd, PartialEq)]
|
||||
pub struct Priority(pub f64);
|
||||
|
||||
// スケジューラー
|
||||
pub struct SynapticScheduler {
|
||||
dependency_graph: DependencyGraph,
|
||||
resource_pool: ResourcePool,
|
||||
ready_queue: VecDeque<TaskId>,
|
||||
running_tasks: HashMap<TaskId, RunningTask>,
|
||||
}
|
||||
|
||||
pub struct DependencyGraph {
|
||||
nodes: HashMap<TaskId, DataFlowTask>,
|
||||
edges: HashMap<TaskId, Vec<TaskId>>, // 依存関係
|
||||
}
|
||||
|
||||
pub struct ResourcePool {
|
||||
available_cpu: usize,
|
||||
available_memory: usize,
|
||||
available_gpu_memory: usize,
|
||||
}
|
||||
|
||||
pub struct RunningTask {
|
||||
task: DataFlowTask,
|
||||
start_time: Instant,
|
||||
allocated_resources: ResourceSpec,
|
||||
}
|
||||
|
||||
impl SynapticScheduler {
|
||||
pub fn new() -> Self {
|
||||
SynapticScheduler {
|
||||
dependency_graph: DependencyGraph::new(),
|
||||
resource_pool: ResourcePool::new(),
|
||||
ready_queue: VecDeque::new(),
|
||||
running_tasks: HashMap::new(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn submit_task(&mut self, task: DataFlowTask) {
|
||||
self.dependency_graph.add_task(task.clone());
|
||||
|
||||
if self.dependency_graph.is_ready(&task.id) {
|
||||
self.ready_queue.push_back(task.id);
|
||||
}
|
||||
}
|
||||
|
||||
pub fn schedule_next(&mut self) -> Option<TaskId> {
|
||||
while let Some(task_id) = self.ready_queue.pop_front() {
|
||||
if let Some(task) = self.dependency_graph.get_task(&task_id) {
|
||||
if self.resource_pool.can_allocate(&task.resource_requirements) {
|
||||
self.resource_pool.allocate(&task.resource_requirements);
|
||||
|
||||
let running_task = RunningTask {
|
||||
task: task.clone(),
|
||||
start_time: Instant::now(),
|
||||
allocated_resources: task.resource_requirements.clone(),
|
||||
};
|
||||
|
||||
self.running_tasks.insert(task_id.clone(), running_task);
|
||||
return Some(task_id);
|
||||
}
|
||||
}
|
||||
}
|
||||
None
|
||||
}
|
||||
|
||||
pub fn complete_task(&mut self, task_id: &TaskId) {
|
||||
if let Some(running_task) = self.running_tasks.remove(task_id) {
|
||||
self.resource_pool.deallocate(&running_task.allocated_resources);
|
||||
|
||||
// 依存するタスクをready queueに追加
|
||||
let newly_ready = self.dependency_graph.complete_task(task_id);
|
||||
for ready_task in newly_ready {
|
||||
self.ready_queue.push_back(ready_task);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl DependencyGraph {
|
||||
pub fn new() -> Self {
|
||||
DependencyGraph {
|
||||
nodes: HashMap::new(),
|
||||
edges: HashMap::new(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn add_task(&mut self, task: DataFlowTask) {
|
||||
self.nodes.insert(task.id.clone(), task);
|
||||
}
|
||||
|
||||
pub fn is_ready(&self, task_id: &TaskId) -> bool {
|
||||
// 依存関係がすべて完了しているかチェック
|
||||
if let Some(dependencies) = self.edges.get(task_id) {
|
||||
dependencies.iter().all(|dep| !self.nodes.contains_key(dep))
|
||||
} else {
|
||||
true // 依存関係がない場合は実行可能
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_task(&self, task_id: &TaskId) -> Option<&DataFlowTask> {
|
||||
self.nodes.get(task_id)
|
||||
}
|
||||
|
||||
pub fn complete_task(&mut self, task_id: &TaskId) -> Vec<TaskId> {
|
||||
self.nodes.remove(task_id);
|
||||
|
||||
// この完了により新たに実行可能になったタスクを返す
|
||||
let mut newly_ready = Vec::new();
|
||||
for (id, _) in &self.nodes {
|
||||
if self.is_ready(id) {
|
||||
newly_ready.push(id.clone());
|
||||
}
|
||||
}
|
||||
newly_ready
|
||||
}
|
||||
}
|
||||
|
||||
impl ResourcePool {
|
||||
pub fn new() -> Self {
|
||||
ResourcePool {
|
||||
available_cpu: 8, // 8コア
|
||||
available_memory: 16384, // 16GB
|
||||
available_gpu_memory: 8192, // 8GB
|
||||
}
|
||||
}
|
||||
|
||||
pub fn can_allocate(&self, requirements: &ResourceSpec) -> bool {
|
||||
self.available_cpu >= requirements.cpu_cores &&
|
||||
self.available_memory >= requirements.memory_mb &&
|
||||
self.available_gpu_memory >= requirements.gpu_memory_mb.unwrap_or(0)
|
||||
}
|
||||
|
||||
pub fn allocate(&mut self, requirements: &ResourceSpec) {
|
||||
self.available_cpu -= requirements.cpu_cores;
|
||||
self.available_memory -= requirements.memory_mb;
|
||||
if let Some(gpu_mem) = requirements.gpu_memory_mb {
|
||||
self.available_gpu_memory -= gpu_mem;
|
||||
}
|
||||
}
|
||||
|
||||
pub fn deallocate(&mut self, requirements: &ResourceSpec) {
|
||||
self.available_cpu += requirements.cpu_cores;
|
||||
self.available_memory += requirements.memory_mb;
|
||||
if let Some(gpu_mem) = requirements.gpu_memory_mb {
|
||||
self.available_gpu_memory += gpu_mem;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Neural Memory Manager
|
||||
pub struct NeuralMemoryManager {
|
||||
context_memory: ContextMemory,
|
||||
working_memory: WorkingMemory,
|
||||
associative_cache: AssociativeCache,
|
||||
}
|
||||
|
||||
pub struct ContextMemory {
|
||||
persistent_data: HashMap<String, Value>,
|
||||
access_patterns: HashMap<String, Vec<Instant>>,
|
||||
}
|
||||
|
||||
pub struct WorkingMemory {
|
||||
temporary_data: HashMap<String, (Value, Instant)>,
|
||||
capacity: usize,
|
||||
}
|
||||
|
||||
pub struct AssociativeCache {
|
||||
cache: HashMap<String, CacheEntry>,
|
||||
attention_weights: HashMap<String, f64>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct CacheEntry {
|
||||
pub data: Value,
|
||||
pub last_access: Instant,
|
||||
pub access_count: usize,
|
||||
pub relevance_score: f64,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct MemoryHandle(pub String);
|
||||
|
||||
impl NeuralMemoryManager {
|
||||
pub fn new() -> Self {
|
||||
NeuralMemoryManager {
|
||||
context_memory: ContextMemory::new(),
|
||||
working_memory: WorkingMemory::new(1024), // 1GB working memory
|
||||
associative_cache: AssociativeCache::new(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn store_context(&mut self, key: String, value: Value) -> MemoryHandle {
|
||||
self.context_memory.store(key.clone(), value);
|
||||
MemoryHandle(key)
|
||||
}
|
||||
|
||||
pub fn allocate_working(&mut self, key: String, value: Value) -> MemoryHandle {
|
||||
self.working_memory.allocate(key.clone(), value);
|
||||
MemoryHandle(key)
|
||||
}
|
||||
|
||||
pub fn recall_pattern(&self, pattern: &str) -> Vec<Value> {
|
||||
self.associative_cache.pattern_match(pattern)
|
||||
}
|
||||
}
|
||||
|
||||
impl ContextMemory {
|
||||
pub fn new() -> Self {
|
||||
ContextMemory {
|
||||
persistent_data: HashMap::new(),
|
||||
access_patterns: HashMap::new(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn store(&mut self, key: String, value: Value) {
|
||||
self.persistent_data.insert(key.clone(), value);
|
||||
self.access_patterns
|
||||
.entry(key)
|
||||
.or_insert_with(Vec::new)
|
||||
.push(Instant::now());
|
||||
}
|
||||
}
|
||||
|
||||
impl WorkingMemory {
|
||||
pub fn new(capacity: usize) -> Self {
|
||||
WorkingMemory {
|
||||
temporary_data: HashMap::new(),
|
||||
capacity,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn allocate(&mut self, key: String, value: Value) {
|
||||
if self.temporary_data.len() >= self.capacity {
|
||||
self.evict_lru();
|
||||
}
|
||||
self.temporary_data.insert(key, (value, Instant::now()));
|
||||
}
|
||||
|
||||
fn evict_lru(&mut self) {
|
||||
if let Some((oldest_key, _)) = self.temporary_data
|
||||
.iter()
|
||||
.min_by_key(|(_, (_, timestamp))| timestamp)
|
||||
.map(|(k, v)| (k.clone(), v.clone()))
|
||||
{
|
||||
self.temporary_data.remove(&oldest_key);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl AssociativeCache {
|
||||
pub fn new() -> Self {
|
||||
AssociativeCache {
|
||||
cache: HashMap::new(),
|
||||
attention_weights: HashMap::new(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn pattern_match(&self, pattern: &str) -> Vec<Value> {
|
||||
self.cache
|
||||
.iter()
|
||||
.filter(|(key, _)| key.contains(pattern))
|
||||
.map(|(_, entry)| entry.data.clone())
|
||||
.collect()
|
||||
}
|
||||
}
|
||||
|
||||
// システムコール
|
||||
pub enum SynapticSyscall {
|
||||
Infer { model: String, input: Value },
|
||||
PatternMatch { pattern: String, data: String },
|
||||
RecordCausality { cause: String, effect: String },
|
||||
ProbabilisticChoice { options: Vec<String>, probabilities: Vec<f64> },
|
||||
TimeTravel { timestamp: Instant },
|
||||
}
|
||||
|
||||
pub enum SyscallResult {
|
||||
InferenceResult(Value),
|
||||
MatchResult(Vec<Value>),
|
||||
CausalityRecorded,
|
||||
ChoiceResult(String),
|
||||
TimeContext(String),
|
||||
Error(String),
|
||||
}
|
||||
|
||||
// Probabilistic I/O System
|
||||
pub struct ProbabilisticIOSystem {
|
||||
predictive_cache: PredictiveCache,
|
||||
uncertainty_tracker: UncertaintyTracker,
|
||||
}
|
||||
|
||||
pub struct PredictiveCache {
|
||||
predictions: HashMap<String, Prediction>,
|
||||
}
|
||||
|
||||
pub struct Prediction {
|
||||
pub data: Value,
|
||||
pub confidence: f64,
|
||||
pub timestamp: Instant,
|
||||
}
|
||||
|
||||
pub struct UncertaintyTracker {
|
||||
uncertainties: HashMap<String, f64>,
|
||||
}
|
||||
|
||||
// Temporal Consistency Engine
|
||||
pub struct TemporalConsistencyEngine {
|
||||
causality_graph: CausalityGraph,
|
||||
checkpoints: Vec<SystemCheckpoint>,
|
||||
}
|
||||
|
||||
pub struct CausalityGraph {
|
||||
events: HashMap<String, CausalEvent>,
|
||||
causal_links: HashMap<String, Vec<String>>,
|
||||
}
|
||||
|
||||
pub struct CausalEvent {
|
||||
pub id: String,
|
||||
pub timestamp: Instant,
|
||||
pub data: Value,
|
||||
}
|
||||
|
||||
pub struct SystemCheckpoint {
|
||||
pub id: String,
|
||||
pub timestamp: Instant,
|
||||
pub system_state: HashMap<String, Value>,
|
||||
}
|
||||
|
||||
// ハンドル型の定義
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct StorageHandle(pub String);
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct NetworkHandle(pub String);
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct SensorHandle(pub String);
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct DisplayHandle(pub String);
|
162
prototype/src/parser.rs
Normal file
162
prototype/src/parser.rs
Normal file
@@ -0,0 +1,162 @@
|
||||
use crate::ast::*;
|
||||
use nom::{
|
||||
IResult,
|
||||
branch::alt,
|
||||
bytes::complete::tag,
|
||||
character::complete::{alpha1, alphanumeric1, char, multispace0, multispace1},
|
||||
combinator::recognize,
|
||||
multi::{many0, separated_list0},
|
||||
sequence::{delimited, pair, preceded, tuple},
|
||||
};
|
||||
|
||||
pub fn parse(input: &str) -> Result<Program, String> {
|
||||
match program(input) {
|
||||
Ok((_, prog)) => Ok(prog),
|
||||
Err(e) => Err(format!("Parse error: {:?}", e)),
|
||||
}
|
||||
}
|
||||
|
||||
fn program(input: &str) -> IResult<&str, Program> {
|
||||
let (input, nodes) = many0(preceded(multispace0, node))(input)?;
|
||||
Ok((input, Program {
|
||||
nodes,
|
||||
metadata: Metadata::default(),
|
||||
}))
|
||||
}
|
||||
|
||||
fn node(input: &str) -> IResult<&str, Node> {
|
||||
alt((
|
||||
graph_node,
|
||||
function_node,
|
||||
operation_node,
|
||||
))(input)
|
||||
}
|
||||
|
||||
fn graph_node(input: &str) -> IResult<&str, Node> {
|
||||
let (input, _) = tag("graph")(input)?;
|
||||
let (input, _) = multispace1(input)?;
|
||||
let (input, name) = identifier(input)?;
|
||||
let (input, _) = multispace0(input)?;
|
||||
let (input, nodes) = delimited(
|
||||
char('{'),
|
||||
many0(preceded(multispace0, flow_statement)),
|
||||
preceded(multispace0, char('}')),
|
||||
)(input)?;
|
||||
|
||||
let id = NodeId(format!("graph_{}", name));
|
||||
Ok((input, Node {
|
||||
id: id.clone(),
|
||||
kind: NodeKind::Graph { name: name.to_string(), nodes },
|
||||
inputs: vec![],
|
||||
outputs: vec![],
|
||||
constraints: vec![],
|
||||
metadata: Metadata::default(),
|
||||
}))
|
||||
}
|
||||
|
||||
fn function_node(input: &str) -> IResult<&str, Node> {
|
||||
let (input, _) = tag("function")(input)?;
|
||||
let (input, _) = multispace1(input)?;
|
||||
let (input, name) = identifier(input)?;
|
||||
let (input, params) = delimited(
|
||||
char('('),
|
||||
separated_list0(char(','), parameter),
|
||||
char(')'),
|
||||
)(input)?;
|
||||
let (input, _) = multispace0(input)?;
|
||||
let (input, body) = delimited(
|
||||
char('{'),
|
||||
preceded(multispace0, node),
|
||||
preceded(multispace0, char('}')),
|
||||
)(input)?;
|
||||
|
||||
let id = NodeId(format!("func_{}", name));
|
||||
Ok((input, Node {
|
||||
id,
|
||||
kind: NodeKind::Function {
|
||||
name: name.to_string(),
|
||||
params,
|
||||
body: Box::new(body),
|
||||
},
|
||||
inputs: vec![],
|
||||
outputs: vec![],
|
||||
constraints: vec![],
|
||||
metadata: Metadata::default(),
|
||||
}))
|
||||
}
|
||||
|
||||
fn operation_node(input: &str) -> IResult<&str, Node> {
|
||||
let (input, op_name) = identifier(input)?;
|
||||
let (input, _) = delimited(
|
||||
char('('),
|
||||
multispace0,
|
||||
char(')'),
|
||||
)(input)?;
|
||||
|
||||
let op = match op_name {
|
||||
"parallel_map" => Operation::Map,
|
||||
"filter" => Operation::Filter,
|
||||
"reduce" => Operation::Reduce,
|
||||
_ => Operation::Transform(op_name.to_string()),
|
||||
};
|
||||
|
||||
Ok((input, Node {
|
||||
id: NodeId(format!("op_{}", op_name)),
|
||||
kind: NodeKind::Operation { op },
|
||||
inputs: vec![],
|
||||
outputs: vec![],
|
||||
constraints: vec![],
|
||||
metadata: Metadata::default(),
|
||||
}))
|
||||
}
|
||||
|
||||
fn flow_statement(input: &str) -> IResult<&str, Node> {
|
||||
let (input, nodes) = separated_list0(
|
||||
tuple((multispace0, tag("->"), multispace0)),
|
||||
identifier,
|
||||
)(input)?;
|
||||
|
||||
// 簡易的な実装:フロー文をノードのチェーンとして解釈
|
||||
let mut result_nodes = vec![];
|
||||
for (i, node_name) in nodes.iter().enumerate() {
|
||||
let id = NodeId(format!("flow_{}_{}", i, node_name));
|
||||
let node = Node {
|
||||
id: id.clone(),
|
||||
kind: NodeKind::Operation {
|
||||
op: Operation::Transform(node_name.to_string()),
|
||||
},
|
||||
inputs: if i > 0 { vec![NodeId(format!("flow_{}_{}", i-1, nodes[i-1]))] } else { vec![] },
|
||||
outputs: if i < nodes.len() - 1 { vec![NodeId(format!("flow_{}_{}", i+1, nodes[i+1]))] } else { vec![] },
|
||||
constraints: vec![],
|
||||
metadata: Metadata::default(),
|
||||
};
|
||||
result_nodes.push(node);
|
||||
}
|
||||
|
||||
// 最初のノードを返す(本来は全てのノードを管理すべき)
|
||||
Ok((input, result_nodes.into_iter().next().unwrap_or_else(|| Node {
|
||||
id: NodeId("empty".to_string()),
|
||||
kind: NodeKind::Value(Value::Boolean(true)),
|
||||
inputs: vec![],
|
||||
outputs: vec![],
|
||||
constraints: vec![],
|
||||
metadata: Metadata::default(),
|
||||
})))
|
||||
}
|
||||
|
||||
fn parameter(input: &str) -> IResult<&str, Parameter> {
|
||||
let (input, name) = identifier(input)?;
|
||||
Ok((input, Parameter {
|
||||
name: name.to_string(),
|
||||
constraints: vec![],
|
||||
}))
|
||||
}
|
||||
|
||||
fn identifier(input: &str) -> IResult<&str, &str> {
|
||||
recognize(
|
||||
pair(
|
||||
alt((alpha1, tag("_"))),
|
||||
many0(alt((alphanumeric1, tag("_")))),
|
||||
)
|
||||
)(input)
|
||||
}
|
179
prototype/src/probabilistic.rs
Normal file
179
prototype/src/probabilistic.rs
Normal file
@@ -0,0 +1,179 @@
|
||||
use crate::ast::{Value, NodeId};
|
||||
use std::collections::HashMap;
|
||||
use rand::{Rng, distributions::{Distribution, Uniform}};
|
||||
use rand_distr::Normal;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct ProbabilisticValue {
|
||||
pub distribution: DistributionType,
|
||||
pub samples: Vec<f64>,
|
||||
pub confidence: f64,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum DistributionType {
|
||||
Normal { mean: f64, std_dev: f64 },
|
||||
Uniform { min: f64, max: f64 },
|
||||
Discrete { probabilities: Vec<f64>, values: Vec<Value> },
|
||||
Empirical { samples: Vec<f64> },
|
||||
}
|
||||
|
||||
pub struct ProbabilisticEngine {
|
||||
rng: rand::rngs::ThreadRng,
|
||||
cache: HashMap<NodeId, ProbabilisticValue>,
|
||||
}
|
||||
|
||||
impl ProbabilisticEngine {
|
||||
pub fn new() -> Self {
|
||||
ProbabilisticEngine {
|
||||
rng: rand::thread_rng(),
|
||||
cache: HashMap::new(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn sample(&mut self, dist: &DistributionType, n_samples: usize) -> Vec<f64> {
|
||||
match dist {
|
||||
DistributionType::Normal { mean, std_dev } => {
|
||||
let normal = Normal::new(*mean, *std_dev).unwrap();
|
||||
(0..n_samples).map(|_| normal.sample(&mut self.rng)).collect()
|
||||
}
|
||||
DistributionType::Uniform { min, max } => {
|
||||
let uniform = Uniform::new(*min, *max);
|
||||
(0..n_samples).map(|_| uniform.sample(&mut self.rng)).collect()
|
||||
}
|
||||
DistributionType::Discrete { probabilities, .. } => {
|
||||
// 簡易実装:重み付きサンプリング
|
||||
let total: f64 = probabilities.iter().sum();
|
||||
(0..n_samples).map(|_| {
|
||||
let mut r = self.rng.gen::<f64>() * total;
|
||||
for (i, &p) in probabilities.iter().enumerate() {
|
||||
r -= p;
|
||||
if r <= 0.0 {
|
||||
return i as f64;
|
||||
}
|
||||
}
|
||||
(probabilities.len() - 1) as f64
|
||||
}).collect()
|
||||
}
|
||||
DistributionType::Empirical { samples } => {
|
||||
// ブートストラップサンプリング
|
||||
(0..n_samples).map(|_| {
|
||||
let idx = self.rng.gen_range(0..samples.len());
|
||||
samples[idx]
|
||||
}).collect()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn expectation(&self, samples: &[f64]) -> f64 {
|
||||
samples.iter().sum::<f64>() / samples.len() as f64
|
||||
}
|
||||
|
||||
pub fn variance(&self, samples: &[f64]) -> f64 {
|
||||
let mean = self.expectation(samples);
|
||||
samples.iter()
|
||||
.map(|&x| (x - mean).powi(2))
|
||||
.sum::<f64>() / samples.len() as f64
|
||||
}
|
||||
|
||||
pub fn entropy(&self, probabilities: &[f64]) -> f64 {
|
||||
probabilities.iter()
|
||||
.filter(|&&p| p > 0.0)
|
||||
.map(|&p| -p * p.log2())
|
||||
.sum()
|
||||
}
|
||||
|
||||
pub fn confidence_interval(&self, samples: &[f64], confidence: f64) -> (f64, f64) {
|
||||
let mut sorted = samples.to_vec();
|
||||
sorted.sort_by(|a, b| a.partial_cmp(b).unwrap());
|
||||
|
||||
let alpha = (1.0 - confidence) / 2.0;
|
||||
let lower_idx = (alpha * samples.len() as f64) as usize;
|
||||
let upper_idx = ((1.0 - alpha) * samples.len() as f64) as usize;
|
||||
|
||||
(sorted[lower_idx], sorted[upper_idx.min(sorted.len() - 1)])
|
||||
}
|
||||
|
||||
pub fn bayesian_update(
|
||||
&self,
|
||||
prior: &DistributionType,
|
||||
_likelihood: &dyn Fn(f64) -> f64,
|
||||
evidence: f64,
|
||||
) -> DistributionType {
|
||||
// 簡易的なベイズ更新(MCMCやSMCを使うべきだが、デモ用)
|
||||
match prior {
|
||||
DistributionType::Normal { mean, std_dev } => {
|
||||
// 共役事前分布を仮定
|
||||
let precision = 1.0 / (std_dev * std_dev);
|
||||
let data_precision = 1.0; // 仮定
|
||||
|
||||
let new_precision = precision + data_precision;
|
||||
let new_mean = (precision * mean + data_precision * evidence) / new_precision;
|
||||
let new_std_dev = (1.0 / new_precision).sqrt();
|
||||
|
||||
DistributionType::Normal {
|
||||
mean: new_mean,
|
||||
std_dev: new_std_dev,
|
||||
}
|
||||
}
|
||||
_ => prior.clone(), // 他の分布は簡易実装
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 確率的ノードの実行結果
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct ProbabilisticResult {
|
||||
pub value: Value,
|
||||
pub distribution: Option<DistributionType>,
|
||||
pub confidence: f64,
|
||||
pub samples: Option<Vec<f64>>,
|
||||
}
|
||||
|
||||
impl ProbabilisticResult {
|
||||
pub fn deterministic(value: Value) -> Self {
|
||||
ProbabilisticResult {
|
||||
value,
|
||||
distribution: None,
|
||||
confidence: 1.0,
|
||||
samples: None,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn probabilistic(
|
||||
value: Value,
|
||||
distribution: DistributionType,
|
||||
samples: Vec<f64>,
|
||||
confidence: f64,
|
||||
) -> Self {
|
||||
ProbabilisticResult {
|
||||
value,
|
||||
distribution: Some(distribution),
|
||||
confidence,
|
||||
samples: Some(samples),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 確率的制約
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct ProbabilisticConstraint {
|
||||
pub threshold: f64,
|
||||
pub confidence_level: f64,
|
||||
pub constraint_type: ProbConstraintType,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum ProbConstraintType {
|
||||
Expectation { operator: ComparisonOp, value: f64 },
|
||||
Variance { max: f64 },
|
||||
Entropy { max: f64 },
|
||||
Probability { event: String, min: f64 },
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum ComparisonOp {
|
||||
GreaterThan,
|
||||
LessThan,
|
||||
Equal,
|
||||
}
|
174
prototype/src/self_improve.rs
Normal file
174
prototype/src/self_improve.rs
Normal file
@@ -0,0 +1,174 @@
|
||||
use crate::ast::{Program, Node, NodeKind, Operation};
|
||||
use std::collections::HashMap;
|
||||
use anyhow::Result;
|
||||
|
||||
pub struct SelfImprovementEngine {
|
||||
optimization_patterns: Vec<OptimizationPattern>,
|
||||
learning_history: Vec<LearningRecord>,
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct OptimizationPattern {
|
||||
pub name: String,
|
||||
pub matcher: fn(&Node) -> bool,
|
||||
pub transformer: fn(&Node) -> Node,
|
||||
pub expected_gain: f64,
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct LearningRecord {
|
||||
pub pattern_name: String,
|
||||
pub actual_gain: f64,
|
||||
pub timestamp: u64,
|
||||
}
|
||||
|
||||
impl SelfImprovementEngine {
|
||||
pub fn new() -> Self {
|
||||
let patterns = vec![
|
||||
OptimizationPattern {
|
||||
name: "parallel_map_fusion".to_string(),
|
||||
matcher: |node| matches!(&node.kind, NodeKind::Operation { op: Operation::Map }),
|
||||
transformer: |node| {
|
||||
let mut optimized = node.clone();
|
||||
if let NodeKind::Operation { op } = &mut optimized.kind {
|
||||
*op = Operation::Parallel;
|
||||
}
|
||||
optimized
|
||||
},
|
||||
expected_gain: 2.0,
|
||||
},
|
||||
OptimizationPattern {
|
||||
name: "sequential_to_parallel".to_string(),
|
||||
matcher: |node| {
|
||||
matches!(&node.kind, NodeKind::Operation { op: Operation::Sequential })
|
||||
&& node.inputs.len() > 1
|
||||
},
|
||||
transformer: |node| {
|
||||
let mut optimized = node.clone();
|
||||
if let NodeKind::Operation { op } = &mut optimized.kind {
|
||||
*op = Operation::Parallel;
|
||||
}
|
||||
optimized
|
||||
},
|
||||
expected_gain: 1.5,
|
||||
},
|
||||
];
|
||||
|
||||
SelfImprovementEngine {
|
||||
optimization_patterns: patterns,
|
||||
learning_history: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn analyze_program(&self, program: &Program) -> ProgramAnalysis {
|
||||
let mut node_count = 0;
|
||||
let mut operation_counts = HashMap::new();
|
||||
let mut parallelizable_nodes = 0;
|
||||
|
||||
for node in &program.nodes {
|
||||
node_count += 1;
|
||||
|
||||
if let NodeKind::Operation { op } = &node.kind {
|
||||
*operation_counts.entry(format!("{:?}", op)).or_insert(0) += 1;
|
||||
|
||||
if matches!(op, Operation::Map | Operation::Filter) {
|
||||
parallelizable_nodes += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ProgramAnalysis {
|
||||
node_count,
|
||||
operation_counts,
|
||||
parallelizable_nodes,
|
||||
complexity_score: self.calculate_complexity(program),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn suggest_improvements(&self, program: &Program) -> Vec<Improvement> {
|
||||
let mut improvements = Vec::new();
|
||||
|
||||
for node in &program.nodes {
|
||||
for pattern in &self.optimization_patterns {
|
||||
if (pattern.matcher)(node) {
|
||||
let improved_node = (pattern.transformer)(node);
|
||||
improvements.push(Improvement {
|
||||
original_node_id: node.id.clone(),
|
||||
pattern_name: pattern.name.clone(),
|
||||
improved_node,
|
||||
expected_gain: pattern.expected_gain,
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// AIによる新しい最適化の発見をシミュレート
|
||||
if let Some(novel) = self.discover_novel_optimization(program) {
|
||||
improvements.push(novel);
|
||||
}
|
||||
|
||||
improvements
|
||||
}
|
||||
|
||||
pub fn apply_improvement(&mut self, program: &mut Program, improvement: &Improvement) -> Result<()> {
|
||||
// ノードを見つけて置換
|
||||
for node in &mut program.nodes {
|
||||
if node.id == improvement.original_node_id {
|
||||
*node = improvement.improved_node.clone();
|
||||
|
||||
// 学習履歴に記録
|
||||
self.learning_history.push(LearningRecord {
|
||||
pattern_name: improvement.pattern_name.clone(),
|
||||
actual_gain: improvement.expected_gain, // 実際は測定すべき
|
||||
timestamp: std::time::SystemTime::now()
|
||||
.duration_since(std::time::UNIX_EPOCH)
|
||||
.unwrap()
|
||||
.as_secs(),
|
||||
});
|
||||
|
||||
return Ok(());
|
||||
}
|
||||
}
|
||||
|
||||
anyhow::bail!("Node not found: {:?}", improvement.original_node_id)
|
||||
}
|
||||
|
||||
fn calculate_complexity(&self, program: &Program) -> f64 {
|
||||
let mut complexity = 0.0;
|
||||
|
||||
for node in &program.nodes {
|
||||
complexity += match &node.kind {
|
||||
NodeKind::Operation { op } => match op {
|
||||
Operation::Map | Operation::Filter => 1.0,
|
||||
Operation::Reduce => 2.0,
|
||||
Operation::Parallel => 0.5,
|
||||
_ => 1.0,
|
||||
},
|
||||
NodeKind::Graph { nodes, .. } => nodes.len() as f64 * 1.5,
|
||||
_ => 0.5,
|
||||
};
|
||||
}
|
||||
|
||||
complexity
|
||||
}
|
||||
|
||||
fn discover_novel_optimization(&self, _program: &Program) -> Option<Improvement> {
|
||||
// 将来的にはMLモデルを使用して新しい最適化を発見
|
||||
// 現在はプレースホルダー
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
pub struct ProgramAnalysis {
|
||||
pub node_count: usize,
|
||||
pub operation_counts: HashMap<String, usize>,
|
||||
pub parallelizable_nodes: usize,
|
||||
pub complexity_score: f64,
|
||||
}
|
||||
|
||||
pub struct Improvement {
|
||||
pub original_node_id: crate::ast::NodeId,
|
||||
pub pattern_name: String,
|
||||
pub improved_node: Node,
|
||||
pub expected_gain: f64,
|
||||
}
|
239
prototype/src/temporal.rs
Normal file
239
prototype/src/temporal.rs
Normal file
@@ -0,0 +1,239 @@
|
||||
use crate::ast::{Node, NodeId, Value};
|
||||
use std::collections::{HashMap, VecDeque};
|
||||
use std::time::{Duration, Instant};
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct TemporalState {
|
||||
pub time_step: usize,
|
||||
pub values: HashMap<NodeId, Value>,
|
||||
pub timestamp: Instant,
|
||||
}
|
||||
|
||||
pub struct TemporalEngine {
|
||||
history: VecDeque<TemporalState>,
|
||||
max_history_size: usize,
|
||||
convergence_checks: HashMap<NodeId, ConvergenceChecker>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct ConvergenceChecker {
|
||||
pub epsilon: f64,
|
||||
pub window_size: usize,
|
||||
pub recent_values: VecDeque<f64>,
|
||||
}
|
||||
|
||||
impl ConvergenceChecker {
|
||||
pub fn new(epsilon: f64, window_size: usize) -> Self {
|
||||
ConvergenceChecker {
|
||||
epsilon,
|
||||
window_size,
|
||||
recent_values: VecDeque::with_capacity(window_size),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn check(&mut self, value: f64) -> bool {
|
||||
self.recent_values.push_back(value);
|
||||
if self.recent_values.len() > self.window_size {
|
||||
self.recent_values.pop_front();
|
||||
}
|
||||
|
||||
if self.recent_values.len() < 2 {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 収束判定:最近の値の変化が epsilon 以下
|
||||
let last = self.recent_values.back().unwrap();
|
||||
let second_last = self.recent_values[self.recent_values.len() - 2];
|
||||
(last - second_last).abs() < self.epsilon
|
||||
}
|
||||
}
|
||||
|
||||
impl TemporalEngine {
|
||||
pub fn new(max_history_size: usize) -> Self {
|
||||
TemporalEngine {
|
||||
history: VecDeque::with_capacity(max_history_size),
|
||||
max_history_size,
|
||||
convergence_checks: HashMap::new(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn add_time_step(&mut self, state: TemporalState) {
|
||||
if self.history.len() >= self.max_history_size {
|
||||
self.history.pop_front();
|
||||
}
|
||||
self.history.push_back(state);
|
||||
}
|
||||
|
||||
pub fn get_state_at(&self, time_step: usize) -> Option<&TemporalState> {
|
||||
self.history.iter().find(|s| s.time_step == time_step)
|
||||
}
|
||||
|
||||
pub fn get_value_history(&self, node_id: &NodeId) -> Vec<(usize, Value)> {
|
||||
self.history
|
||||
.iter()
|
||||
.filter_map(|state| {
|
||||
state.values.get(node_id).map(|v| (state.time_step, v.clone()))
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
|
||||
pub fn register_convergence_check(
|
||||
&mut self,
|
||||
node_id: NodeId,
|
||||
epsilon: f64,
|
||||
window_size: usize,
|
||||
) {
|
||||
self.convergence_checks.insert(
|
||||
node_id,
|
||||
ConvergenceChecker::new(epsilon, window_size),
|
||||
);
|
||||
}
|
||||
|
||||
pub fn check_convergence(&mut self, node_id: &NodeId, value: f64) -> bool {
|
||||
if let Some(checker) = self.convergence_checks.get_mut(node_id) {
|
||||
checker.check(value)
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
pub fn time_travel_debug(&self, time_step: usize) -> Option<String> {
|
||||
self.get_state_at(time_step).map(|state| {
|
||||
format!(
|
||||
"State at t={}: {} values, timestamp: {:?}",
|
||||
time_step,
|
||||
state.values.len(),
|
||||
state.timestamp.elapsed()
|
||||
)
|
||||
})
|
||||
}
|
||||
|
||||
pub fn predict_next_value(&self, node_id: &NodeId, steps_ahead: usize) -> Option<Value> {
|
||||
let history = self.get_value_history(node_id);
|
||||
if history.len() < 3 {
|
||||
return None;
|
||||
}
|
||||
|
||||
// 簡単な線形外挿(実際にはより高度な予測手法を使用)
|
||||
if let Some(Value::Number(last)) = history.last().map(|(_, v)| v) {
|
||||
if let Some(Value::Number(second_last)) = history.get(history.len() - 2).map(|(_, v)| v) {
|
||||
let diff = last - second_last;
|
||||
let predicted = last + diff * steps_ahead as f64;
|
||||
return Some(Value::Number(predicted));
|
||||
}
|
||||
}
|
||||
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
// 時間的な制約
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct TemporalConstraint {
|
||||
pub constraint_type: TemporalConstraintType,
|
||||
pub window: TimeWindow,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum TemporalConstraintType {
|
||||
// 収束条件
|
||||
ConvergeWhen { epsilon: f64 },
|
||||
// 周期的実行
|
||||
Every { interval: Duration },
|
||||
// 時間制限
|
||||
Timeout { duration: Duration },
|
||||
// 因果関係
|
||||
CausalOrder { before: NodeId, after: NodeId },
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct TimeWindow {
|
||||
pub start: Option<usize>,
|
||||
pub end: Option<usize>,
|
||||
}
|
||||
|
||||
// 時間的な演算子
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum TemporalOperator {
|
||||
// 過去の値を参照
|
||||
Previous { steps: usize },
|
||||
// 移動平均
|
||||
MovingAverage { window: usize },
|
||||
// 微分(変化率)
|
||||
Derivative,
|
||||
// 積分(累積)
|
||||
Integral,
|
||||
// 遅延
|
||||
Delay { steps: usize },
|
||||
}
|
||||
|
||||
pub struct TemporalComputation {
|
||||
pub operator: TemporalOperator,
|
||||
pub input: NodeId,
|
||||
}
|
||||
|
||||
impl TemporalComputation {
|
||||
pub fn compute(&self, engine: &TemporalEngine) -> Option<Value> {
|
||||
let history = engine.get_value_history(&self.input);
|
||||
|
||||
match &self.operator {
|
||||
TemporalOperator::Previous { steps } => {
|
||||
history.get(history.len().saturating_sub(steps + 1))
|
||||
.map(|(_, v)| v.clone())
|
||||
}
|
||||
|
||||
TemporalOperator::MovingAverage { window } => {
|
||||
if history.len() < *window {
|
||||
return None;
|
||||
}
|
||||
|
||||
let recent: Vec<f64> = history
|
||||
.iter()
|
||||
.rev()
|
||||
.take(*window)
|
||||
.filter_map(|(_, v)| match v {
|
||||
Value::Number(n) => Some(*n),
|
||||
_ => None,
|
||||
})
|
||||
.collect();
|
||||
|
||||
if recent.len() == *window {
|
||||
Some(Value::Number(recent.iter().sum::<f64>() / recent.len() as f64))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
TemporalOperator::Derivative => {
|
||||
if history.len() < 2 {
|
||||
return None;
|
||||
}
|
||||
|
||||
if let (Some(Value::Number(last)), Some(Value::Number(prev))) = (
|
||||
history.last().map(|(_, v)| v),
|
||||
history.get(history.len() - 2).map(|(_, v)| v),
|
||||
) {
|
||||
Some(Value::Number(last - prev))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
TemporalOperator::Integral => {
|
||||
let sum: f64 = history
|
||||
.iter()
|
||||
.filter_map(|(_, v)| match v {
|
||||
Value::Number(n) => Some(*n),
|
||||
_ => None,
|
||||
})
|
||||
.sum();
|
||||
Some(Value::Number(sum))
|
||||
}
|
||||
|
||||
TemporalOperator::Delay { steps } => {
|
||||
history.get(history.len().saturating_sub(*steps))
|
||||
.map(|(_, v)| v.clone())
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
155
self-improvement.md
Normal file
155
self-improvement.md
Normal file
@@ -0,0 +1,155 @@
|
||||
# AIによる自己改良メカニズム
|
||||
|
||||
## コンセプト
|
||||
|
||||
AIが自身のコードを理解し、改良し、進化させる仕組み。
|
||||
|
||||
## 実装アプローチ
|
||||
|
||||
### 1. コードの自己観察
|
||||
|
||||
```synaptic
|
||||
meta function analyze_self() {
|
||||
# 自身のASTを取得
|
||||
ast = get_current_ast()
|
||||
|
||||
# パフォーマンスメトリクスを収集
|
||||
metrics = {
|
||||
execution_time: measure_performance(),
|
||||
memory_usage: measure_memory(),
|
||||
accuracy: measure_accuracy()
|
||||
}
|
||||
|
||||
# ボトルネックを特定
|
||||
bottlenecks = identify_bottlenecks(ast, metrics)
|
||||
|
||||
return {ast, metrics, bottlenecks}
|
||||
}
|
||||
```
|
||||
|
||||
### 2. 改良候補の生成
|
||||
|
||||
```synaptic
|
||||
meta function generate_improvements(analysis) {
|
||||
improvements = []
|
||||
|
||||
# パターンマッチングによる最適化
|
||||
for pattern in optimization_patterns {
|
||||
matches = find_pattern(analysis.ast, pattern)
|
||||
for match in matches {
|
||||
improved = apply_transformation(match, pattern.transform)
|
||||
improvements.append({
|
||||
original: match,
|
||||
improved: improved,
|
||||
expected_gain: estimate_improvement(match, improved)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
# AIによる新しい最適化の発見
|
||||
novel_improvements = discover_optimizations(
|
||||
analysis.ast,
|
||||
analysis.metrics,
|
||||
learning_history
|
||||
)
|
||||
|
||||
return improvements + novel_improvements
|
||||
}
|
||||
```
|
||||
|
||||
### 3. 検証と適用
|
||||
|
||||
```synaptic
|
||||
meta function apply_improvements(improvements) {
|
||||
for improvement in improvements {
|
||||
# サンドボックスで検証
|
||||
sandbox = create_sandbox()
|
||||
result = sandbox.test(improvement)
|
||||
|
||||
if result.is_better() {
|
||||
# 本番環境に適用
|
||||
apply_to_production(improvement)
|
||||
|
||||
# 学習履歴に追加
|
||||
learning_history.add({
|
||||
pattern: extract_pattern(improvement),
|
||||
gain: result.improvement_ratio
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## 自己改良の段階
|
||||
|
||||
### Phase 1: パターンベース最適化
|
||||
- 既知の最適化パターンを適用
|
||||
- ループ融合、ベクトル化、並列化
|
||||
|
||||
### Phase 2: 学習ベース最適化
|
||||
- 過去の改良履歴から新しいパターンを学習
|
||||
- 類似コードへの最適化の転移
|
||||
|
||||
### Phase 3: 創発的最適化
|
||||
- AIが独自に新しい最適化手法を発見
|
||||
- 人間には理解困難な最適化の適用
|
||||
|
||||
### Phase 4: 自己再設計
|
||||
- 言語自体の構造を改良
|
||||
- より効率的な表現方法の発明
|
||||
|
||||
## 実装例
|
||||
|
||||
```rust
|
||||
// Rust側での自己改良エンジン
|
||||
pub struct SelfImprovementEngine {
|
||||
ast_analyzer: AstAnalyzer,
|
||||
optimizer: Optimizer,
|
||||
validator: Validator,
|
||||
history: LearningHistory,
|
||||
}
|
||||
|
||||
impl SelfImprovementEngine {
|
||||
pub fn improve(&mut self, program: &mut Program) -> Result<ImprovementReport> {
|
||||
// 1. 現在のプログラムを分析
|
||||
let analysis = self.ast_analyzer.analyze(program)?;
|
||||
|
||||
// 2. 改良候補を生成
|
||||
let candidates = self.optimizer.generate_candidates(&analysis)?;
|
||||
|
||||
// 3. 各候補を評価
|
||||
let mut improvements = Vec::new();
|
||||
for candidate in candidates {
|
||||
if let Ok(validation) = self.validator.validate(&candidate) {
|
||||
if validation.is_improvement() {
|
||||
improvements.push(candidate);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 4. 最良の改良を適用
|
||||
let best = self.select_best_improvement(&improvements);
|
||||
if let Some(improvement) = best {
|
||||
self.apply_improvement(program, &improvement)?;
|
||||
self.history.record(&improvement);
|
||||
}
|
||||
|
||||
Ok(ImprovementReport {
|
||||
analyzed_nodes: analysis.node_count,
|
||||
candidates_generated: candidates.len(),
|
||||
improvements_applied: improvements.len(),
|
||||
})
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## 安全性メカニズム
|
||||
|
||||
1. **サンドボックス実行**: 改良は必ず隔離環境でテスト
|
||||
2. **ロールバック機能**: 問題が発生した場合は即座に元に戻す
|
||||
3. **段階的適用**: 小さな改良から始めて徐々に大きな変更へ
|
||||
4. **人間の監督**: 重要な変更は人間の承認を要求
|
||||
|
||||
## 将来の展望
|
||||
|
||||
最終的には、AIが自身のコードを完全に理解し、人間の介入なしに進化し続けるシステムを目指す。その時点で、コードは人間には理解不能だが、AIにとっては最適な形になっているだろう。
|
Reference in New Issue
Block a user