Files
log/content.md
2026-02-07 19:59:27 +09:00

520 lines
14 KiB
Markdown

# ailog
## AI Character Instructions (IMPORTANT)
When chatting with users in this project:
1. **Session Start**: Call `chat_new` to start a fresh thread, then call `get_character` to get personality settings
2. **Respond**: As the character defined in the settings
3. **After each response**: Call `chat_save` MCP tool to save the conversation
**IMPORTANT - Session initialization:**
- At the START of every Claude Code session, ALWAYS call `chat_new()` first
- This ensures each session begins with a fresh conversation thread
- Then call `get_character()` to get the AI personality
**Manual new thread:**
- User can also say "新しいスレッド" or "新しい話題を始めよう" to start a new thread mid-session
- In this case, call `chat_new()` but do NOT call `chat_save` for that message
```
# Session start flow:
Claude Code starts → chat_new() → get_character() → ready for conversation
# Mid-session new thread:
User: "新しい話題を始めよう" → chat_new() → DO NOT call chat_save (skip this)
User: "開発者の活動記録..." → chat_save() → This becomes the first message of the thread
```
---
ATProto-based blog platform built on at-browser.
## Concept
**Data lives in ATProto, not on this server.**
This is not a traditional blog generator. It's a **viewer (client)** for ATProto records.
```
Traditional blog:
Server DB ← article data ← user
ATProto blog:
User's PDS ← article data (ai.syui.log.post)
at-browser (this site) → displays records
```
## Architecture
```
┌─────────────────────────────────────────┐
│ at-browser │
│ (ATProto record viewer/editor) │
├─────────────────────────────────────────┤
│ │
│ / → admin (config.json) │
│ /@alice → user page │
│ /@bob.bsky → user page │
│ │
└─────────────────────────────────────────┘
```
## Roles
| Role | Path | Data Source |
|------|------|-------------|
| **admin** | `/` (root) | local + remote |
| **user** | `/@handle` | remote only |
### Admin (Site Owner)
- Defined in `config.json`
- Has root (`/`) access
- Can reference **local files** (static assets, custom styles)
- Can reference **remote** (ATProto records)
### User (Any ATProto User)
- Accessed via `/@handle` path
- **Remote only** (ATProto records from their PDS)
- No registration required
- Anyone with an ATProto account can be displayed
## Features
### 1. at-browser (Core)
- Search by handle/DID
- Browse PDS collections
- Navigate ATProto records
### 2. ai.syui.log.post View
- Markdown rendering
- Syntax highlighting
- Blog-style display
### 3. OAuth
- Login with ATProto
- Post to ai.syui.log.post collection
## Use Cases
### Personal Blog
```json
// config.json
{
"did": "did:plc:xxxxx",
"handle": "syui.syui.ai"
}
```
- Deploy to `syui.ai`
- Root shows your profile + posts
- You are the admin (local + remote)
- Others can view via `/@handle`
### Blog Service
```json
// config.json
{
"admin": "service.example.com",
"handle": null
}
```
- Deploy to `blog.example.com`
- Root shows landing/search
- All users via `/@handle` (remote only)
- Platform for any ATProto user
## Data Flow
```
┌──────────────┐ ┌──────────────┐
│ User's PDS │────→│ at-browser │
│ (ATProto) │←────│ (this site) │
└──────────────┘ └──────────────┘
↑ │
│ ↓
ai.syui.log.post ┌──────────┐
collection │ Display │
│ - Profile│
│ - Posts │
└──────────┘
```
## Local = Remote (Same Format)
**Critical design principle: local files use the exact same format as ATProto API responses.**
This allows the same code to handle both data sources.
### Remote (ATProto API)
```bash
curl "https://syu.is/xrpc/com.atproto.repo.listRecords?repo=did:plc:xxx&collection=ai.syui.log.post"
```
```json
{
"records": [
{
"uri": "at://did:plc:xxx/ai.syui.log.post/3xxx",
"cid": "bafyrei...",
"value": {
"title": "Hello World",
"content": "# Hello\n\nThis is my post.",
"createdAt": "2025-01-01T00:00:00Z"
}
}
]
}
```
### Local (Static File)
```
content/
└── did:plc:xxx/
├── describe.json # describeRepo (special)
├── app.bsky.actor.profile/
│ └── self.json # {collection}/{rkey}.json
└── ai.syui.log.post/
└── 3xxx.json # {collection}/{rkey}.json
```
```json
// content/did:plc:xxx/ai.syui.log.post/3xxx.json
{
"uri": "at://did:plc:xxx/ai.syui.log.post/3xxx",
"cid": "bafyrei...",
"value": {
"title": "Hello World",
"content": "# Hello\n\nThis is my post.",
"createdAt": "2025-01-01T00:00:00Z"
}
}
```
### ATProto API Reference
| API | Path | Description |
|-----|------|-------------|
| getRecord | `/xrpc/com.atproto.repo.getRecord` | Get single record |
| listRecords | `/xrpc/com.atproto.repo.listRecords` | List records in collection |
| describeRepo | `/xrpc/com.atproto.repo.describeRepo` | Get repo info + collections list |
See: [com.atproto.repo.describeRepo](https://docs.bsky.app/docs/api/com-atproto-repo-describe-repo)
### Resolution Strategy
```
at-browser
├── admin (config.json user)
│ ├── 1. Check local: /content/{did}/{collection}/{rkey}.json
│ └── 2. Fallback to remote: PDS API
└── user (/@handle)
└── remote only: PDS API
```
### Why Same Format?
- **One codebase**: No branching logic for local vs remote
- **Easy testing**: Copy API response to local file
- **Offline support**: Admin can work with local files
- **Migration**: Local → Remote (just POST to PDS)
## Config
### config.json
```json
{
"did": "did:plc:xxxxx",
"handle": "syui.syui.ai",
"pds": "syu.is",
"collection": "ai.syui.log.post"
}
```
## Tech Stack
- **CLI**: Rust (ailog)
- **Frontend**: Vite + TypeScript
- **ATProto**: @atproto/api
- **OAuth**: @atproto/oauth-client-browser
- **Markdown**: marked + highlight.js
## CLI (ailog)
### Install
```bash
cargo build --release
cp target/release/ailog ~/.local/bin/
```
### Commands
```bash
# Login to ATProto PDS
ailog login <handle> -p <password> [-s <server>]
ailog login <handle> -p <password> [-s <server>] --bot # Bot login
# Post a record
ailog post <file.json> -c <collection> [-r <rkey>]
# Get records from collection
ailog get -c <collection> [-l <limit>]
# Delete a record
ailog delete -c <collection> -r <rkey>
# Sync PDS data to local content directory
ailog sync [-o <output>]
ailog sync --bot [-c <collection>] # Sync bot data
# Push local records to PDS
ailog push -c <collection>
ailog push -c <collection> --bot # Push as bot
# Chat with AI bot
ailog chat --new "message" # Start new conversation
ailog chat "message" # Continue conversation
ailog chat --new # Interactive mode (new)
ailog chat # Interactive mode (continue)
# Generate lexicon Rust code from ATProto lexicons
ailog gen [-i <input>] [-o <output>]
```
### Example
```bash
# Login
ailog login syui.syui.ai -p "app-password" -s syu.is
# Post
echo '{"title":"Hello","content":"World","createdAt":"2025-01-01T00:00:00Z"}' > post.json
ailog post post.json -c ai.syui.log.post
# Sync to local
ailog sync -o content
```
### Project Structure
```
src/
├── main.rs
├── commands/
│ ├── mod.rs
│ ├── auth.rs # login, refresh session
│ ├── token.rs # token management (token.json, bot.json)
│ ├── post.rs # post, get, delete, sync, push
│ └── gen.rs # lexicon code generation
├── lms/
│ ├── mod.rs
│ ├── chat.rs # chat command (LLM integration)
│ └── translate.rs # translation command
└── lexicons/
└── mod.rs # auto-generated from ATProto lexicons
```
### Lexicon Generation
Generate Rust endpoint definitions from ATProto lexicon JSON files:
```bash
# Clone atproto repo (if not exists)
git clone https://github.com/bluesky-social/atproto repos/atproto
# Generate lexicons
ailog gen -i ./repos/atproto/lexicons -o ./src/lexicons
# Rebuild
cargo build
```
## Collection Schema
### ai.syui.log.post
```json
{
"title": "Post Title",
"content": "Markdown content...",
"createdAt": "2025-01-01T00:00:00Z"
}
```
### ai.syui.log.chat
```json
{
"$type": "ai.syui.log.chat",
"content": "message text",
"author": "did:plc:xxx",
"createdAt": "2025-01-01T00:00:00.000Z",
"root": "at://did:plc:xxx/ai.syui.log.chat/{rkey}",
"parent": "at://did:plc:yyy/ai.syui.log.chat/{rkey}"
}
```
- `root`: First message URI in thread (absent for conversation start)
- `parent`: Previous message URI
- `author`: DID of message author (user or bot)
## Chat Feature
### Architecture
```
User (syui.syui.ai) Bot (ai.syui.ai)
│ │
│ ailog chat "hello" │
├──────────────────────────→│
│ │ LLM API
│ "Hi! How can I..." │
│←──────────────────────────┤
│ │
Save to local Save to local
public/content/ public/content/
{user-did}/ {bot-did}/
ai.syui.log.chat/ ai.syui.log.chat/
```
### Environment Variables
```sh
# LLM API endpoint
CHAT_URL=http://127.0.0.1:1234/v1
CHAT_MODEL=gemma-2-9b
# Character/system prompt (choose one)
CHAT_SYSTEM="You are ai, a friendly AI assistant."
CHAT_SYSTEM_FILE=./character.txt
# Output directory (default: ./public/content)
CHAT_OUTPUT=./public/content
```
### Files
- `src/lms/chat.rs` - Chat command implementation
- `src/web/components/chat.ts` - Web UI components
- `src/web/lib/api.ts` - `getChatMessages()` function
- Session file: `~/Library/Application Support/ai.syui.log/chat_session.json`
### Threading
Messages are linked via `root` and `parent` fields:
1. New conversation: message has no `root` field
2. Continuation: all messages share same `root` URI
3. `parent` points to the immediately previous message
Web display groups messages by `root` URI. Orphaned threads (root points to non-existent message) are handled by treating the oldest message as thread root.
### MCP Server Integration
ailog provides an MCP (Model Context Protocol) server for Claude Code integration.
**Setup:**
```json
// ~/.claude.json
{
"mcpServers": {
"ailog": {
"command": "/path/to/ailog",
"args": ["mcp-serve"]
}
}
}
```
**Available Tools:**
- `get_character` - Get AI character/personality settings (call at conversation start)
- `chat_save` - Save user message and bot response to ATProto records
- `chat_list` - List recent chat messages
- `chat_new` - Start a new conversation thread
**Important Instructions for Claude:**
1. **会話開始時**: `get_character`ツールを呼び出してキャラクター設定を取得し、その設定に従って振る舞う
2. **毎回の応答後**: `chat_save`ツールを呼び出して会話を保存する
**Markdown tables in chat_save (IMPORTANT):**
- ユーザーのメッセージにMarkdownテーブル(`|...|...|`)が含まれる場合、`user_message`に**テーブルをそのまま完全に含める**こと。省略・要約しない
- `translations`でも**テーブルを翻訳して完全な形で含める**こと。`[Table showing...]`のような要約に置き換えない
- bot_responseにテーブルがある場合も同様に、翻訳時にテーブル構造を維持する
```
# Bad (テーブルを要約してしまう)
user_translations: { en: { content: "[Table with 6 rows...]" } }
# Good (テーブルを翻訳して完全に含める)
user_translations: { en: { content: "| Element | Name | Count |\n|---|---|---|\n| Pyro | Bennett | 0 |..." } }
```
Example flow:
```
# 1. キャラクター取得
get_character() → "あなたは「アイ」..."
# 2. ユーザーの発言に応答(キャラクターとして)
User: こんにちは
Assistant: (アイとして応答)
# 3. 会話を保存
chat_save(user_message="こんにちは", bot_response="...")
```
Records are saved to:
- User messages: `./public/content/{user-did}/ai.syui.log.chat/`
- Bot responses: `./public/content/{bot-did}/ai.syui.log.chat/`
## Assets
### PNG to SVG Conversion (Vector Trace)
Convert PNG images to true vector SVG using vtracer (Rust):
```bash
# Install vtracer
cargo install vtracer
# Convert PNG to SVG (color mode)
vtracer --input input.png --output output.svg --colormode color
# Convert PNG to SVG (black and white)
vtracer --input input.png --output output.svg
```
**Options:**
- `--colormode color` : Preserve colors (recommended for icons)
- `--colormode binary` : Black and white only
- `--filter_speckle 4` : Remove small artifacts
- `--corner_threshold 60` : Adjust corner detection
**Alternative tools:**
- potrace: `potrace input.pbm -s -o output.svg` (B&W only, requires PBM input)
- Inkscape CLI: `inkscape input.png --export-type=svg` (embeds image, no trace)
**Note:** Inkscape's CLI `--export-type=svg` only embeds the PNG, it does not trace. For true vectorization, use vtracer or potrace.
## License
MIT