2.8 KiB
Synaptic: AIQ<><51><D7><ED><B0><E9><DF><F3><B0>hOS
AIL<06>W<E3>\W<>YD!<16>n<E3><6E><D7><ED><B0><E9><DF><F3><B0>h<9E><68><AA><DA>ƣ<C6A3><F3B0B7B9>nv<>z<8B><7A><D7><ED><B8><A7>
<D7><ED><B8><A7><AF><C8>Ӹ<E7><F3>
<93>en<EFBFBD><9E>hOSo<BA><93>n_<81>k-U<>fD~YLAIB<49>ko**AIL<49><4C><EFBFBD><82><B9>k<84>\gM<67><4D><8B><B7><B9>**LŁgYSynaptico<01><>n<06><><E3>'<27><><88>AIn<49>'<27>*HW_i<5F><69>j<84><6A><A2><D7><ED>gY
<9F><C5>_<7F>
1. <20>,<2C><><EFBFBD><9E><B7><B9>
- AST (<28>aˇ() <20><><D9>nh<6E>: <20><><BD><FC><B9>Ɉ<FC><C988>ASTL,<2C><1A>ָ<AA><D6B8><A7>
- <B0><E9><D5><D9><FC><B9>n<9F>L<E2><C7><EB>: <20><><C7><FC><BF><D5>k<FC>eO&<17>L
- <A3><EFBFBD><84>ˇ: U<> `Q<18>WiF<69>cf oAILz<4C>
2. <20><><BA><87><84><D7><ED><B0><E9><DF>
probabilistic function predict(image) {
features ~ extract_features(image)
prediction ~ softmax(linear(features))
@confidence: entropy(prediction) < threshold
return sample(prediction)
}
<BA><9F>'n:<3A>jh<6A>
- ٤<BA><A8><D6>k<88><8B>f<D2>
- <E2><F3>ƫ<EB><ED><B5><F3><D7><EA><F3><B0>
3. B<><42><93><84><D7><ED><B0><E9><DF>
temporal function train(dataset) {
t[0]: model = initialize_weights()
t[1..n]: model = gradient_step(model[t-1], batch[t])
@converge_when: loss[t] - loss[t-1] < epsilon
}
- <B6>K n<><6E>
- <CE>_a<F6>n<EA><D5>$<24>
- <BF><A4><E0><C8><E9><D9><EB><C7><D0>ð
4. <20><><E1><BF><D7><ED><B0><E9><DF>
meta function optimize_function(f: Function) {
ast = parse(f)
optimized_ast = apply_transformations(ast, [
dead_code_elimination,
loop_fusion,
vectorization
])
return compile(optimized_ast)
}
- <B3><FC><C9>n<EA><D5>h<>i
- ASTn<F4><A5><CD>\
- <9F>LBni܄<EFBFBD>i
5. <20><>9o<39><6F>˺<AB>
- ѿ<FC><F3><D9><FC><B9><EFBFBD>i
- f<D2>k<88><8B>9<84>
- <EA>Մj<B3><FC><C9> <09>
6. AIQOS<4F><53><AB><FC>
- <C7><FC><BF><D5><ED><FC>-ù<><C3B9><B1><B8><E5><FC><EA>: <20><><D7><ED>gojO<6A><4F><C7><FC>X<9D><58>k<C2>eO
- <8E>d<16><><E1><E2>: <20><>ƭ<F3><C6AD>/<2F><><EF><FC><AD>/#<23><18>
- <BA><87><84><EA><BD><FC><B9><A1>: <0A><>'<27>nW_<57><5F><EA><BD>M
- AIy<16><><B7><B9><C6><E0><B3>:
sys_infer
,sys_pattern_match
,sys_probabilistic_choice
<C7><E2>n<9F>L
cd prototype
# <20>,<2C>j<EFBFBD><6A><EFBFBD><EFBFBD>h<EFBFBD>L<EFBFBD><4C><EFBFBD><EFBFBD>
cargo run
# <20><>9o<39><6F><EFBFBD><EFBFBD>
cargo run --example self_improve_demo
# <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
cargo run --example probabilistic_demo
# B<><42><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
cargo run --example temporal_demo
# <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
cargo run --example meta_demo
# AIQOS<4F><53><EFBFBD><EFBFBD>
cargo run --example os_kernel_demo
<A2><FC><AD>Ư<C1><E3>
synaptic/
src/
ast.rs # <20>aˇ(n<><6E>
parser.rs # <20><><D1><FC><B5><FC>
graph.rs # <08><><97><B0><E9>
executor.rs # <20>L<9F><4C><A8><F3>
probabilistic.rs # <20><><BA><87><84><D7><ED><B0><E9><DF>
temporal.rs # B<><42><93><84><D7><ED><B0><E9><DF>
meta.rs # <20><><E1><BF><D7><ED><B0><E9><DF>
self_improve.rs # <20><>9o<39><6F><A8><F3>
os_kernel.rs # AIQOS<4F><53><AB><FC>
examples/ # _<>n<FD><6E>
-<08>G
1. AIա<49><D5A1><FC>
- <BA><93>n<06><><E3>' < AIn<49>\<5C><>
- :<3A>j<84>X<9D><58>h<C2><68><E1><BF><C7>
- ѿ<FC><F3><8D>Xk<EFBFBD>iU<>_<8C>
2. <20><><A3><EFBFBD><84><D7><ED><B0><E9><DF>
# <20><>Q}<7D><>
for i in range(10):
result.append(process(i))
# AIQ<08><>
result = parallel_map(process, range(10))
3. <20><><18><><F0><84><B7><B9>
- <E1><BF><C7><FC><BF>L<EFBFBD><9E><CB> kD<44>
- <9F>LBn<EA><F1><EFBFBD>i
- AIk<88><8B><EA><F1>9o
4. &'nͤƣֵ<C6A3><D6B5><DD>
- &<17>LL<4C>թ<C7><D5A9>
- !<21>Lo:<3A>k<07>
- <C7><FC><BF><F6>nY<6E><1C>
en<65>'
-
<D5><EB>_<FD><D1><FC><B5><FC>: <20>hjSynaptic<69><63><EFBFBD><9E><D1><FC>n<FC><6E>
-
JIT<B3><F3>Ѥ<E9>: <20>LB<4C>ik<><6B><88>թ<D1><D5A9><FC><DE>
-
c<>L: <20>鹿<AF><E9B9BF><FC>gn&<17>L
-
b<: <20><><D7><ED><B0>nc<6E>'npf<70><
-
<CF><FC>ɦ<A7><A2>q: AI(<28><><C1>hn#:
<EE>
<EFBFBD>B<84>kAIL<49><4C>n<AB><6E>ɒ<FC>hk<06>W<01><>n<93>ejWk2W<>Q<9A><51><8B><B7><B9><C6><E0><92>W~Y]nB<6E>g<B9><67><B3>o<C9><6F>ko<06> <0A>gYLAIkhcfo<66>ijbkjcfD<66>gW<67>F
*AILD<7F>YD<59>n<82><6E>zY<7A>
- S<8C>L<BA><93>hAILq2Y<>exn,<2C>igY